
1/26/17 COT 5407 1 

COT 5407: Introduction to Algorithms

Giri Narasimhan 
ECS 254A; Phone: x3748 

giri@cis.fiu.edu 
http://www.cis.fiu.edu/~giri/teach/5407S17.html 
https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494 



1/24/17 COT 5407 2 

Recap of Sorting Algorithms
•  SelectionSort 
•  InsertionSort 
•  BubbleSort 
•  QuickSort 
•  MergeSort 
•  HeapSort 
•  Bucket & Radix Sort 
•  Counting Sort 

W
or

st
 C

as
e:

 
O

(N
2 )

 
Worst Case: 
O(N logN) Av

g 
C

as
e:

 
O

(N
 lo

g 
N

) 

Worst Case: O(N);  
Not comparison-based 

Lower Bound for 
Comparison-based 

Sorting 



Tree Sorting
•  BST is a search structure that helps efficient search 

§  Search can be done in O(h) time, where h = height of BST 
§  Also inserts and deletes can be done in O(h) time 
§  Unfortunately, Height h = O(N) 

•  Balanced BST improves BST with h = O(log N) 
§  Thus search can be done in O(log N) 
§  And, inserts and deletes too can be done in O(log N) time 

•  We can use BBSTs in the following way: 
§  Repeatedly insert N items into a BBST 
§  Repeatedly delete the smallest item from the BBST until it is empty 

•  N inserts and N deletes can be done in O(N log N) time 

1/26/17 COT 5407 3 



9/30/08 COT 5407 4 

Order Statistics
•  Maximum, Minimum 

§  Upper Bound 
Ø  O(n) because 
Ø  We have an slgorithm with a single for-loop: n-1 comparisons 

§  Lower Bound 
Ø n-1 comparisons 

•  MinMax 
§  Upper Bound: 2(n-1) comparisons 
§  Lower Bound: 3n/2 comparisons 

•  Max and 2ndMax 
§  Upper Bound: (n-1) + (n-2) comparisons 
§  Lower Bound: Harder to prove 

7 3 1 9 4 8 2 5 0 6 

RankA(x) = 
position of x in 
sorted order of A 



9/30/08 COT 5407 5 

k-Selection; Median
•  Select the k-th smallest item in list 
•  Naïve Solution 

§  Sort;  
§  pick the k-th smallest item in sorted list. 

   O(n log n) time complexity 
•  Idea: Modify Partition from QuickSort 

§  How? 
•  Randomized solution: Average case O(n) 
•  Improved Solution: worst case O(n) 



Using Partition for k-Selection
•  Perform Partition from QuickSort (assume all unique items) 
•  Rank(pivot) = 1 + # of items that are smaller than pivot 
•  If Rank(pivot) = k, we are done 
•  Else, recursively perform k-Selection in one of the  two 

partitions  

1/26/17 COT 5407 6 



9/30/08 COT 5407 7 

QuickSelect: a variant of QuickSort



k-Selection Time Complexity
•  Perform Partition from QuickSort (assume all unique items) 
•  Rank(pivot) = 1 + # of items that are smaller than pivot 
•  If Rank(pivot) = k, we are done 
•  Else, recursively perform k-Selection in one of the  two 

partitions  

1/26/17 COT 5407 8 

•  On the average: 
§  Rank(pivot) = n / 2 

•  Average-case time 
§  T(N) = T(N/2) + O(N)  
§  T(N) = O(N) 

•  Worst-case time 
§  T(N) = T(N-1) + O(N) 
§  T(N) = O(N2) 



9/30/08 COT 5407 9 

Randomized Solution for k-Selection
•  Uses RandomizedPartition instead of Partition 

§  RandomizedPartition picks the pivot uniformly at random from among 
the elements in the list to be partitioned.  

•  Randomized k-Selection runs in O(N) time on the average 
•  Worst-case behavior is very poor O(N2) 



9/30/08 COT 5407 10 

k-Selection & Median: Improved Algorithm

•  Start with initial array 
  



9/30/08 COT 5407 11 

•  Use median of medians as pivot 

•  T(n) < O(n)  + T(n/5) + T(3n/4) 

k-Selection & Median: Improved Algorithm(Cont’d)



9/30/08 COT 5407 12 

ImprovedSelect



9/30/08 COT 5407 13 

PivotPartition


