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Recap of Sorting Algorithms
•  SelectionSort 
•  InsertionSort 
•  BubbleSort 
•  QuickSort 
•  MergeSort 
•  HeapSort 
•  Bucket & Radix Sort 
•  Counting Sort 
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Worst Case: O(N);  
Not comparison-based 

Lower Bound for 
Comparison-based 

Sorting 



Tree Sorting
•  BST is a search structure that helps efficient search 

§  Search can be done in O(h) time, where h = height of BST 
§  Also inserts and deletes can be done in O(h) time 
§  Unfortunately, Height h = O(N) 

•  Balanced BST improves BST with h = O(log N) 
§  Thus search can be done in O(log N) 
§  And, inserts and deletes too can be done in O(log N) time 

•  We can use BBSTs in the following way: 
§  Repeatedly insert N items into a BBST 
§  Repeatedly delete the smallest item from the BBST until it is empty 

•  N inserts and N deletes can be done in O(N log N) time 
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Order Statistics
•  Maximum, Minimum 

§  Upper Bound 
Ø  O(n) because 
Ø  We have an slgorithm with a single for-loop: n-1 comparisons 

§  Lower Bound 
Ø n-1 comparisons 

•  MinMax 
§  Upper Bound: 2(n-1) comparisons 
§  Lower Bound: 3n/2 comparisons 

•  Max and 2ndMax 
§  Upper Bound: (n-1) + (n-2) comparisons 
§  Lower Bound: Harder to prove 
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RankA(x) = 
position of x in 
sorted order of A 
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k-Selection; Median
•  Select the k-th smallest item in list 
•  Naïve Solution 

§  Sort;  
§  pick the k-th smallest item in sorted list. 

   O(n log n) time complexity 
•  Idea: Modify Partition from QuickSort 

§  How? 
•  Randomized solution: Average case O(n) 
•  Improved Solution: worst case O(n) 



Using Partition for k-Selection
•  Perform Partition from QuickSort (assume all unique items) 
•  Rank(pivot) = 1 + # of items that are smaller than pivot 
•  If Rank(pivot) = k, we are done 
•  Else, recursively perform k-Selection in one of the  two 

partitions  
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QuickSelect: a variant of QuickSort



k-Selection Time Complexity
•  Perform Partition from QuickSort (assume all unique items) 
•  Rank(pivot) = 1 + # of items that are smaller than pivot 
•  If Rank(pivot) = k, we are done 
•  Else, recursively perform k-Selection in one of the  two 

partitions  
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•  On the average: 
§  Rank(pivot) = n / 2 

•  Average-case time 
§  T(N) = T(N/2) + O(N)  
§  T(N) = O(N) 

•  Worst-case time 
§  T(N) = T(N-1) + O(N) 
§  T(N) = O(N2) 
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Randomized Solution for k-Selection
•  Uses RandomizedPartition instead of Partition 

§  RandomizedPartition picks the pivot uniformly at random from among 
the elements in the list to be partitioned.  

•  Randomized k-Selection runs in O(N) time on the average 
•  Worst-case behavior is very poor O(N2) 
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k-Selection & Median: Improved Algorithm

•  Start with initial array 
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•  Use median of medians as pivot 

•  T(n) < O(n)  + T(n/5) + T(3n/4) 

k-Selection & Median: Improved Algorithm(Cont’d)
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ImprovedSelect
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PivotPartition


