COT 5407: Introduction to Algorithms

Giri Narasimhan ECS 254A; Phone: x3748 giri@cis.fiu.edu http://www.cis.fiu.edu/~giri/teach/5407517.html https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

Recap of Sorting Algorithms

Tree Sorting

- BST is a search structure that helps efficient search
 - Search can be done in O(h) time, where h = height of BST
 - Also inserts and deletes can be done in O(h) time
 - Unfortunately, Height h = O(N)
- Balanced BST improves BST with h = O(log N)
 - Thus search can be done in O(log N)
 - And, inserts and deletes too can be done in O(log N) time
- We can use **B**BSTs in the following way:
 - Repeatedly insert N items into a BBST
 - Repeatedly delete the smallest item from the BBST until it is empty
- N inserts and N deletes can be done in O(N log N) time

Order Statistics

Maximum, Minimum

7 3 1 9 4 8 2 5 0 6

- Upper Bound
 - > O(n) because
 - > We have an sigorithm with a single for-loop: n-1 comparisons
- Lower Bound
 - n-1 comparisons
- MinMax
 - Upper Bound: 2(n-1) comparisons
 - Lower Bound: 3n/2 comparisons
- Max and 2ndMax
 - Upper Bound: (n-1) + (n-2) comparisons
 - Lower Bound: Harder to prove

 $\frac{\text{Rank}_{A}(\mathbf{x})}{\text{position of } \mathbf{x} \text{ in}}$ sorted order of A

k-Selection; Median

- Select the k-th smallest item in list
- Naïve Solution
 - Sort;
 - pick the k-th smallest item in sorted list.
 O(n log n) time complexity
- Idea: Modify Partition from QuickSort

How?

- Randomized solution: Average case O(n)
- Improved Solution: worst case O(n)

Using Partition for k-Selection

- Perform Partition from QuickSort (assume all unique items)
- <u>Rank(pivot)</u> = 1 + # of items that are smaller than pivot
- If <u>Rank(pivot</u>) = k, we are done
- Else, recursively perform k-Selection in one of the two partitions

PARTITION(
$$array A, int p, int r$$
)
1 $x \leftarrow A[r]$ \triangleright Choose pivot
2 $i \leftarrow p - 1$
3 for $j \leftarrow p$ to $r - 1$
4 do if $(A[j] \leq x)$
5 then $i \leftarrow i + 1$
6 exchange $A[i] \leftrightarrow A[j]$
7 exchange $A[i + 1] \leftrightarrow A[r]$
8 return $i + 1$

QuickSelect: a variant of QuickSort

QUICKSELECT(array A, int k, int p, int r)

 \triangleright Select k-th largest in subarray A[p...r]

if (p=r)n return A[n]2

3
$$q \leftarrow \text{PARTITION}(A, p, r)$$

$$\begin{array}{ll} 4 & i \leftarrow q - p + 1 & \triangleright \text{ Compute rank of pivot} \\ 5 & \textbf{if } (i = k) \end{array}$$

$$\mathbf{if} \ (i=k)$$

then return
$$A[q]$$

- then return QUICKSELECT(A, k, p, q)8
 - **return** QUICKSELECT(A, k i, q + 1, r)else

6

9

k-Selection Time Complexity

- Perform Partition from QuickSort (assume all unique items)
- <u>Rank(pivot)</u> = 1 + # of items that are smaller than pivot
- If <u>Rank(pivot</u>) = k, we are done
- Else, recursively perform k-Selection in one of the two partitions
- On the average:
 - <u>Rank(pivot</u>) = n / 2
- Average-case time
 - T(N) = T(N/2) + O(N)
 - T(N) = O(N)
- Worst-case time
 - T(N) = T(N-1) + O(N)
 - T(N) = O(N²)

PARTITION(array A, int p, int r) 1 $x \leftarrow A[r]$ \triangleright Choose pivot 2 $i \leftarrow p - 1$ 3 for $j \leftarrow p$ to r - 14 do if $(A[j] \leq x)$ 5 then $i \leftarrow i + 1$ 6 exchange $A[i] \leftrightarrow A[j]$ 7 exchange $A[i+1] \leftrightarrow A[r]$ 8 return i + 1

Randomized Solution for k-Selection

- Uses <u>RandomizedPartition</u> instead of Partition
 - <u>RandomizedPartition</u> picks the pivot uniformly at random from among the elements in the list to be partitioned.
- Randomized k-Selection runs in O(N) time on the average
- Worst-case behavior is very poor O(N²)

k-Selection & Median: Improved Algorithm

k-Selection & Median: Improved Algorithm(Cont'd)

Use median of medians as pivot

• T(n) < O(n) + T(n/5) + T(3n/4)

ImprovedSelect

IMPROVEDSELECT(array A, int k, int p, int r) \triangleright Select k-th largest in subarray A[p..r]1 **if** (p = r)2 then return A[p]3 else $N \leftarrow r - p + 1$ Partition A[p..r] into subsets of 5 elements and 4 collect all medians of subsets in B[1..[N/5]]. 5 $Pivot \leftarrow IMPROVEDSELECT(B, 1, \lceil N/5 \rceil, \lceil N/10 \rceil)$ $q \leftarrow \text{PIVOTPARTITION}(A, p, r, Pivot)$ 6 7 $i \leftarrow q - p + 1$ \triangleright Compute rank of pivot 8 **if** (i = k)9 then return A[q]if (i > k)1011 then return IMPROVEDSELECT(A, k, p, q-1)else return IMPROVEDSELECT(A, k - i, q + 1, r)12

PivotPartition

PIVOTPARTITION(array A, int p, int r, item Pivot) \triangleright Partition using provided *Pivot* $1 \quad i \leftarrow p-1$ for $j \leftarrow p$ to r2do if $(A[j] \leq Pivot)$ 3 then $i \leftarrow i+1$ 4 exchange $A[i] \leftrightarrow A[j]$ 56 return i+1