COT 5407: Introduction to Algorithms

Giri Narasimhan ECS 254A; Phone: x3748 giri@cis.fiu.edu http://www.cis.fiu.edu/~giri/teach/5407517.html https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

Sorting Animations

- https://www.toptal.com/developers/sorting-algorithms
- https://visualgo.net/sorting
- https://www.cs.usfca.edu/~galles/visualization/ ComparisonSort.html
- YouTube: https://www.youtube.com/watch?v=kPRAOW1kECg
- http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html
- http://cg.scs.carleton.ca/~morin/misc/sortalg/
- http://home.westman.wave.ca/~rhenry/sort/
- http://cs.smith.edu/~dthiebaut/java/sort/demo.html
- Which one did you like the most?

Sorting Real Numbers

- **Real numbers** are infinite precision numbers and in some cases cannot be written down in their entirety.
- Theorem: There are an uncountable number of real numbers between any two real numbers.
- In particular, real numbers cannot be sorted using Bucket sort or radix sort or counting sort even if they are within a range.
- Real numbers stored on a real computer are not really "real numbers" because they are finite precision numbers. We can only approximate real numbers using a computer. Integers can be stored precisely on a computer. The integer n can be stored using roughly log₂n bits.

k-Selection & Median: Improved Algorithm

QuickSelect (A) & Improved Median (B)

k-Selection & Median: Improved Algorithm(Cont'd)

• Use median of medians as pivot

- T(n) < O(n) + T(n/5) + T(3n/4)
- Only way to solve is using the "Substitution Method"
- Solution: T(n) = O(n)
- Constants are large

ImprovedSelect

IMPROVEDSELECT(array A, int k, int p, int r) \triangleright Select k-th largest in subarray A[p..r]1 **if** (p = r)2 then return A[p]3 else $N \leftarrow r - p + 1$ Partition A[p..r] into subsets of 5 elements and 4 collect all medians of subsets in B[1..[N/5]]. 5 $Pivot \leftarrow IMPROVEDSELECT(B, 1, \lceil N/5 \rceil, \lceil N/10 \rceil)$ $q \leftarrow \text{PIVOTPARTITION}(A, p, r, Pivot)$ 6 7 $i \leftarrow q - p + 1$ \triangleright Compute rank of pivot 8 **if** (i = k)9 then return A[q]if (i > k)10then return IMPROVEDSELECT(A, k, p, q-1)11 else return IMPROVEDSELECT(A, k - i, q + 1, r)12

PivotPartition

PIVOTPARTITION(array A, int p, int r, item Pivot) \triangleright Partition using provided *Pivot* $1 \quad i \leftarrow p-1$ for $j \leftarrow p$ to r2do if $(A[j] \leq Pivot)$ 3 then $i \leftarrow i+1$ 4 exchange $A[i] \leftrightarrow A[j]$ 56 return i+1

Data Structure Evolution

- Standard operations on data structures
 - Search
 - Insert
 - Delete
- Linear Lists
 - Implementation: Arrays (Unsorted and Sorted)
- Dynamic Linear Lists
 - Implementation: Linked Lists
- Dynamic Trees
 - Implementation: Binary Search Trees

BST: Search

TREESEARCH(node x, key k)

 \rhd Search for key k in subtree rooted at node x

- 1 **if** ((x = NIL) or (k = key[x]))
- 2 then return x
- 3 **if** (k < key[x])
- 4 **then return** TREESEARCH(left[x], k) 5 **else return** TREESEARCH(right[x], k)

Time Complexity: O(h) h = height of binary search tree <u>Not $O(\log n)$ — Why?</u>

BST: Insert

BST: Delete

1 a a

.

		Time Complexity: $O(n)$
T	$REEDELETE(tree \ T, node \ z)$	h = height of binary search tree
	\triangleright Delete node z from tree T	n – noight of binary ocaron troo
1	if $((left[z] = NIL) \text{ or } (right[z] = NIL))$	
2	$\mathbf{then}\; y \leftarrow z$	Sat y as the node to be delated
3	else $y \leftarrow \text{Tree-Successor}(z)$	Set y as the node to be deleted.
4	if $(left[y] \neq \text{NIL})$	It has at most one child, and let
5	then $x \leftarrow left[y]$	that child be node X
6	else $x \leftarrow right[y]$	
7	if $(x \neq \text{NIL})$	If y has one child, then y is deleted
8	$\mathbf{then}\; p[x] \leftarrow p[y]$	and the parent pointer of \mathbf{x} is fixed.
9	$\mathbf{if} \ (p[y] = \mathbf{NIL})$	
10	then $root[T] \leftarrow x$	
11	else if $(y = left[p[y]])$	The shild painters of the percent of y
12	then $left[p[y]] \leftarrow x$	in fixed
13	else $right[p[y]] \leftarrow x$	is fixed.
14	if $(y \neq z)$	
15	then $key[z] \leftarrow key[y]$	The contents of mode - are fixed
16	$\operatorname{cop} y$'s satellite data into z	The contents of hode Z are fixed.
17	return y	12