COT 5407: Introduction to Algorithms

> Giri Narasimhan
> ECS 254A; Phone: $x 3748$ giri@cis.fiu.edu
http://www.cis.fiu.edu/~giri/teach/5407S17.html https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

Operations on Dynamic RB Trees

- K-Selection

- Select an item with a specified rank
- Inverse of K-Selection
- Find rank of an item in the tree
- What information should be stored?
- Rank - does not work!
- Size of Subtree - works!
> OS-Rank
>OS-Select

Augmented Data Structures

- Why is it needed?
- Because basic data structures not enough for all operations
- storing extra information helps execute special operations more efficiently.
- Can any data structure be augmented?
- Yes. Any data structure can be augmented.
- Can a data structure be augmented with any additional information?
- Theoretically, yes.
- How to choose which additional information to store.
- Only if we can maintain the additional information efficiently under all operations. That means, with additional information, we need to perform old and new operations efficiently maintain the additional information efficiently.

How to augment data structures

1. choose an underlying data structure
2. determine additional information to be maintained in the underlying data structure,
3. develop new operations,
4. verify that the additional information can be maintained for the modifying operations on the underlying data structure.

Augmenting RB-Trees

Theorem 14.1, page 309
Let f be a field that augments a red-black tree T with n nodes, and $f(x)$ can be computed using only the information in nodes x, left $[x]$, and $\operatorname{right}[x]$, including $f[\operatorname{left}[x]]$ and $f[\operatorname{right}[x]]$.
Then, we can maintain $f(x)$ during insertion and deletion without asymptotically affecting the $O(\log n)$ performance of these operations.

For example,

```
    size[x] = size[left[x]] + size[right[x]] + 1
    rank[x] = ?
```


Examples of augmenting RB-Trees

- Parent
- Height
- Any associative function on all previous values or all succeeding values.
- Next
- Previous

Mid Term Exam

Feb 21

Room Scheduling Problem

- Given a set of requests to use a room
" [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11], [8,12], [12,14]
- Schedule largest number of above requests in the room
- Different approaches
- Try by hand, exhaustive search, improve an initial solution, iterative methods, divide and conquer, greedy methods, etc.
- Simple Greedy Selection
- Sort by start time and pick in "greedy" fashion
- Does not work. WHY? $>[0,6],[6,10]$ is the solution you will end up with.
- Other greedy strategies
- Sort by length of interval
- Does not work. WHY?

Room Scheduling - Improved Solution

[0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11], [8,12], [12,14]
$[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11],[8,12],[2,13],[12,14]$-- Sorted by finish times
$[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11],[8,12],[2,13],[12,14]$
[1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]
[1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]
$[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11],[8,12],[2,13],[12,14]$
$[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11],[8,12],[2,13],[12,14]$

Greedy Algorithms

Given a set of activities (s_{i}, f_{i}), we want to schedule the maximum number of non-overlapping activities.
GREEDY-ACTIVITY-SELECTOR (s, f)

1. $n=$ length[s]
2. $S=\left\{a_{1}\right\}$
3. $i=1$
4. for $m=2$ to n do
5. if s_{m} is not before f_{i} then
6.

$$
S=S \cup\left\{a_{m}\right\}
$$

7. $i=m$
8. return S

Why does it work?

- THEOREM

Let A be a set of activities and let a_{1} be the activity with the earliest finish time. Then activity a_{1} is in some maximum-sized subset of non-overlapping activities.

- PROOF

Let S^{\prime} be a solution that does not contain a_{1}. Let $a^{\prime}{ }_{1}$ be the activity with the earliest finish time in S'. Then replacing $a^{\prime}{ }_{1}$ by a_{1} gives a solution S of the same size.
Why are we allowed to replace? Why is it of the same size?

Then apply induction! How?

Greedy Algorithms - Huffman Coding

- Huffman Coding Problem

Example: Release 29.1 of 15-Feb-2005 of TrEMBL Protein Database contains $1,614,107$ sequence entries, comprising $505,947,503$ amino acids. There are 20 possible amino acids. What is the minimum number of bits to store the compressed database?

$\sim 2.5 \mathrm{G}$ bits or 300MB.

- How to improve this?
- Information: Frequencies are not the same.

Idea: Use shorter codes for more frequent amino acids and longer codes for less frequent ones.

Huffman Coding

2 million characters in file.

> A, C, G, T, N, Y, R, S, M

IDEA 1: Use ASCII Code Each need at least 8 bits,	IDEA 3: Use Variable Length Codes	
Total $=16 \mathrm{M}$ bits $=2 \mathrm{MB}$		11
IDEA 2: Use 4-bit Codes	T 22	10
Each need at least 4 bits,	C 18	011
Total $=8 \mathrm{M}$ bits $=1 \mathrm{MB}$	G 18	010
		001
	N 10	00011
Percentage	Y 5	00010
Frequencies	R 4	00001
	S 4	00000

How to Decode?
Need Unique decoding!
Easy for Ideas 1 \& 2.
What about Idea 3?
110101101110010001100000000110
110101101110010001100000000110

2 million characters in file.
Length = ?
Expected length = ?
Sum up products of frequency times the code length, i.e.,

$$
(.22 \times 2+.22 \times 2+.18 \times 3+.18 \times 3+.10 \times 3+.05 \times 5+.04 \times 5+.04 \times 5+.03 \times 5) \times 2 \mathrm{M} \text { bits }=
$$

$$
3.24 \mathrm{M} \text { bits }=.4 \mathrm{MB}
$$

