COT 5407: Introduction to Algorithms

Giri Narasimhan
 ECS 254A; Phone: $\times 3748$ giri@cis.fiu.edu

http://www.cis.fiu.edu/~giri/teach/5407S17.html https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

Room Scheduling Problem

- Given a set of requests to use a room
- [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11], [8,12], [12,14]
- Schedule largest number of above requests in the room
- Different approaches
- Try by hand, exhaustive search, improve an initial solution, iterative methods, divide and conquer, greedy methods, etc.
- Simple Greedy Selection
- Sort by start time and pick in "greedy" fashion
- Does not work. WHY?
- $[0,6],[6,10]$ is the solution you will end up with.
- Other greedy strategies
- Sort by length of interval
- Does not work. WHY?

Greedy Algorithms

- Given a set of activities $\left(s_{i}, f_{i}\right)$, we want to schedule the maximum number of non-overlapping activities.
GREEDY-ACTIVITY-SELECTOR (s, f)

1. $n=$ length $[s]$
2. $S=\left\{a_{1}\right\}$
3. $i=1$
4. for $m=2$ to n do
5. if s_{m} is not before f_{i} then
6.

$$
S=S \cup\left\{a_{m}\right\}
$$

7.

$$
i=m
$$

8. return S

Why does it work?

- THEOREM

Let A be a set of activities and let a_{1} be the activity with the earliest finish time. Then activity a_{1} is in some maximum-sized subset of non-overlapping activities.
PROOF
Let S ' be a solution that does not contain a_{1}. Let $a^{\prime}{ }_{1}$ be the activity with the earliest finish time in S^{\prime}. Then replacing $a^{\prime}{ }_{1}$ by a_{1} gives a solution S of the same size.
Why are we allowed to replace? Why is it of the same size?

Then apply induction! How?

Greedy Algorithms - Huffman Coding

- Huffman Coding Problem

Example: Release 29.1 of 15-Feb-2005 of TrEMBL Protein Database contains $1,614,107$ sequence entries, comprising 505,947,503 amino acids. There are 20 possible amino acids. What is the minimum number of bits to store the compressed database?
~2.5 G bits or 300MB.

- How to improve this?
- Information: Frequencies are not the same.

A		. 56 Ser	
Arg (R) 5.24	Glu (E) 6.54	4 Lys (K) 5.96	Thr (T) 5.52
Asn (N) 4.28	Gly (G) 6.90	$0 \quad \mathrm{Met}(\mathrm{M}) 2.36$	Trp (W) 1.18
Asp (D) 5.28	His (H) 2.26	Phe (F) 4.06	Tyr (Y) 3.13
Cys (C) 1.60 Ile (I)	5.88 Pro	Po (P) 4.87 Val	

- Idea: Use shorter codes for more frequent amino acids and longer codes for less frequent ones.

Huffman Coding

2 million characters in file.
A, C, G, T, N, Y, R, S, M

IDEA 1: Use ASCII Code Each need at least 8 bits,	IDEA 3: Use Variable Length Codes	
Total $=16 \mathrm{M}$ bits $=2 \mathrm{MB}$	A 22	11
IDEA 2: Use 4-bit Codes	T 22	10
Each need at least 4 bits,	C 18	011
Total $=8 \mathrm{M}$ bits $=1 \mathrm{MB}$	G 18	010
		001
		00011
Percentage	Y	00010
Frequencies	R 4	00001
	S 4	00000

```
How to Decode?
Need Unique decoding!
Easy for Ideas 1&2.
What about Idea 3?
110101101110010001100000000110
1 1 0 1 0 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0
```

2 million characters in file.
Length = ?
Expected length =?
Sum up products of frequency times the code length, i.e.,
$(.22 \times 2+.22 \times 2+.18 \times 3+.18 \times 3+.10 \times 3+.05 \times 5+.04 \times 5+.04 \times 5+.03 \times 5) \times 2 \mathrm{M}$ bits $=$ 3.24 M bits $=.4 \mathrm{MB}$

