
2/9/17 COT 5407 1

COT 5407: Introduction to Algorithms

Giri Narasimhan
ECS 254A; Phone: x3748

giri@cis.fiu.edu
http://www.cis.fiu.edu/~giri/teach/5407S17.html
https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

2/7/17 COT 5407 2

Room Scheduling Problem
• Room Scheduling: Given a set of requests to use a room

– [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13],
[12,14]

– Schedule largest number of above requests in the room
• Greedy Algorithm worked!

– Sort by finish time and pick in “greedy” fashion
• Now let’s modify the problem
• Room Scheduling with Attendee Numbers: Given a set of

requests to use a room (with # of attendees)
– [1,4] (4), [3,5] (8), [0,6] (5), [5,7] (15), [3,8] (22), [5,9] (6), [6,10]

(5), [8,11] (5), [8,12] (14), [2,13] (11), [12,14] (6)
• Schedule requests to maximize the total # of attendees

– Greedy Solution will be [1,4], [5,7], [8,11], [12,14]
– And will satisfy 4 + 15 + 5 + 6 = 30 attendees
– Greed is not good!

2/9/17 COT 5407 3

Dynamic Programming
• Activity Problem Revisited: Given a set of n

activities ai = (si, fi), we want to schedule the
maximum number of non-overlapping
activities.

• General Approach: Attempt a recursive
solution

Recursive Solution
• Observation: To solve the problem on

activities A = {a1,…,an}, we notice that either
– optimal solution does not include an

• then enough to solve subproblem on An-1= {a1,…,an-1}
– optimal solution includes an

• Enough to solve subproblem on Ak = {a1,…,ak}, the set A
without activities that overlap an.

2/9/17 COT 5407 4

Recursive Solution
int Rec-ROOM-SCHEDULING (s, f, t, n)

// Here n equals length[s];
// Input: first n requests with their s & f times & # attend
// It returns optimal number of requests scheduled
1. Let k be index of last request with finish time before sn
2.Output larger of two values:
3. { Rec-ROOM-SCHEDULING (s, f, n-1),

Rec-ROOM-SCHEDULING (s, f, k) + t[n] }
// t[n] is number of attendees of n-th request

2/9/17 COT 5407 5

Observations
• If we look at all subproblems generated by the recursive

solution, and ignore repeated calls, then we see the
following calls:
– Rec-ROOM-SCHEDULING (s, f, n-1)

• Rec-ROOM-SCHEDULING (s, f, n-2)
– …

• Rec-ROOM-SCHEDULING (s, f, n’)
– …

– Rec-ROOM-SCHEDULING (s, f, k)
• Rec-ROOM-SCHEDULING (s, f, k-1)

– …
• Rec-ROOM-SCHEDULING (s, f, k’)

– …

• Above list includes all subproblems Rec-ROOM-
SCHEDULING (s, f, i) for all values of i between 1 and n

2/9/17 COT 5407 6

2/9/17 COT 5407 7

Dynamic Programming: Room Scheduling
• Let A be the set of n activities A = {a1, …, an}

(sorted by finish times).
• The inputs to the subproblems are:

A1 = {a1}
A2 = {a1, a2}
A3 = {a1, a2, a3}, …,
An = A

• i-th Subproblem: Select the max number of non-
overlapping activities from Ai

2/9/17 COT 5407 8

An efficient implementation
• Why not solve the subproblems on A1, A2, …,

An-1, An in that order?
• Is the problem on A1 easy?
• Can the optimal solutions to the problems on

A1,…,Ai help to solve the problem on Ai+1?
– YES! Either:

• optimal solution does not include ai+1
– problem on Ai

• optimal solution includes ai+1
– problem on Ak (equal to Ai without activities that overlap ai+1)
– but this has already been solved according to our ordering.

2/9/17 COT 5407 9

Dynamic Programming: Room Scheduling
• Solving for An solves the original problem.
• Solving for A1 is easy.
• If you have optimal solutions S1, …, Si-1 for

subproblems on A1, …, Ai-1, how to compute Si?
• Recurrence Relation:

– The optimal solution for Ai either
• Case 1: does not include ai or
• Case 2: includes ai

– Case 1: Si = Si-1
– Case 2: Si = Sk U {ai}, for some k < i.

• How to find such a k? We know that ak cannot overlap ai.

2/9/17 COT 5407 10

DP: Room Scheduling w/ Attendees
• DP-ROOM-SCHEDULING-w-ATTENDEES (s, f, t)

1. n = length[s]
2.N[1] = t1 // number of attendees in S1
3.F[1] = 1 // last activity in S1
4.for i = 2 to n do
5. let k be the last activity finished before si
6. if (N[i-1] > N[k] + ti) then // Case 1
7. N[i] = N[i-1]
8. F[i] = F[i-1]
9. else // Case 2
10. N[i] = N[k] + ti
11. F[i] = I
12.Output N[n]

How to output Sn?
Backtrack!

Time Complexity?
O(n lg n)

2/9/17 COT 5407 11

Approach to DP Problems
• Write down a recursive solution
• Use recursive solution to identify list of

subproblems to solve (there must be
overlapping subproblems for effective DP)

• Decide a data structure to store solutions to
subproblems (MEMOIZATION)

• Write down Recurrence relation for solutions
of subproblems

• Identify a hierarchy/order for subproblems
• Write down non-recursive solution/algorithm

2/9/17 COT 5407 12

Longest Common Subsequence
S1 = CORIANDER CORIANDER

S2 = CREDITORS CREDITORS
Longest Common Subsequence(S1[1..9], S2[1..9]) = CRIR

Recursive Solution
LCS(S1, S2, m, n)
// m is length of S1 and n is length of S2

// Returns length of longest common subsequence
1. If (S1[m] == S2[n]), then
2. return 1 + LCS(S1, S2, m-1, n-1)
3. Else return larger of
4. LCS(S1, S2, m-1, n) and LCS(S1, S2, m, n-1)

Observation:
All the recursive calls correspond to subproblems to solve and
they include LCS(S1, S2, i, j) for all i between 1 and m, and all j
between 1 and n

2/9/17 COT 5407 13

Recurrence Relation & Memoization
• Recurrence Relation:

– LCS[i,j] = LCS[i-1, j-1] + 1, if S1[i] = S2[j])
LCS[i,j] = max { LCS[i-1, j], LCS[i, j-1] }, otherwise

• Table (m X n table)
• Hierarchy of Solutions?

– Solve in row major order

2/9/17 COT 5407 14

2/9/17 COT 5407 15

LCS Problem
LCS_Length (X, Y)
1. m ß length[X]
2. n ß Length[Y]
3. for i = 1 to m
4. do c[i, 0] ß 0
5. for j =1 to n
6. do c[0,j] ß0
7. for i = 1 to m
8. do for j = 1 to n
9. do if (xi = yj)
10. then c[i, j] ß c[i-1, j-1] + 1
11. b[i, j] ß “ ↸”
12. else if c[i-1, j] c[i, j-1]
13. then c[i, j] ß c[i-1, j]
14. b[i, j] ß “­”
15. else
16. c[i, j] ß c[i, j-1]
17. b[i, j] ß “¬”
18. return c[m,n]

