COT 5407: Introduction to Algorithms

> Giri Narasimhan
> ECS 254A; Phone: $\times 3748$ giri@cis.fiu.edu
http://www.cis.fiu.edu/~giri/teach/5407S17.html https://moodle.cis.fiu.edu/v3.1/course/view.php?id=1494

Room Scheduling Problem

- Room Scheduling: Given a set of requests to use a room
- $[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11],[8,12],[2,13]$,
- Schedule largest number of above requests in the room
- Greedy Algorithm worked!
- Sort by finish time and pick in "greedy" fashion
- Now let's modify the problem
- Room Scheduling with Attendee Numbers: Given a set of requests to use a room (with \# of attendees)
- $[1,4](4),[3,5](8),[0,6](5),[5,7](15),[3,8](22),[5,9](6),[6,10]$ (5), $[8,11]$ (5), [8,12] (14), $[2,13](11),[12,14]$ (6)
- Schedule requests to maximize the total \# of attendees
- Greedy Solution will be [1,4], [5,7], [8,11], [12,14]
- And will satisfy $4+15+5+6=30$ attendees
- Greed is not good!

Dynamic Programming

- Activity Problem Revisited: Given a set of n activities $a_{i}=\left(s_{i}, f_{i}\right)$, we want to schedule the maximum number of non-overlapping activities.
- General Approach: Attempt a recursive solution

Recursive Solution

- Observation: To solve the problem on activities $A=\left\{a_{1}, \ldots, a_{n}\right\}$, we notice that either
- optimal solution does not include a_{n}
- then enough to solve subproblem on $A_{n-1}=\left\{a_{1}, \ldots, a_{n-1}\right\}$
- optimal solution includes a_{n}
- Enough to solve subproblem on $A_{k}=\left\{a_{1}, \ldots, a_{k}\right\}$, the set A without activities that overlap a_{n}.

Recursive Solution

int Rec-ROOM-SCHEDULING (s, f, \dagger, n)

// Here n equals length[s];
// Input: first n requests with their s \& f times \& \# attend // It returns optimal number of requests scheduled

1. Let k be index of last request with finish time before s_{n}
2. Output larger of two values:
3.

\{ Rec-ROOM-SCHEDULING ($s, f, n-1$), Rec-ROOM-SCHEDULING $(s, f, k)++[n]\}$
// $\quad+[n]$ is number of attendees of n-th reques \dagger

Observations

- If we look at all subproblems generated by the recursive solution, and ignore repeated calls, then we see the following calls:
- Rec-ROOM-SCHEDULING (s, f, n-1)
- Rec-ROOM-SCHEDULING ($s, f, n-2$)
- Rec-ROOM-SCHEDULING (s, f, n')
- Rec-ROOM-SCHEDULING (s, f, k)
- Rec-ROOM-SCHEDULING (s, f, k-1)
- Rec-ROOM-SCHEDULING (s, f, k')
- Above list includes all subproblems Rec-ROOMSCHEDULING (s, f, i) for all values of i between 1 and n

Dynamic Programming: Room Scheduling

- Let A be the set of n activities $A=\left\{a_{1}, \ldots, a_{n}\right\}$ (sorted by finish times).
- The inputs to the subproblems are:
$A_{1}=\left\{a_{1}\right\}$
$A_{2}=\left\{a_{1}, a_{2}\right\}$
$A_{3}=\left\{a_{1}, a_{2}, a_{3}\right\}, \ldots$,
$A_{n}=A$
- i-th Subproblem: Select the max number of nonoverlapping activities from A_{i}

An efficient implementation

- Why not solve the subproblems on A_{1}, A_{2}, \ldots, A_{n-1}, A_{n} in that order?
- Is the problem on A_{1} easy?
- Can the optimal solutions to the problems on A_{1}, \ldots, A_{i} help to solve the problem on A_{i+1} ?
- YES! Either:
- optimal solution does not include a_{i+1}
- problem on A_{i}
- optimal solution includes a_{i+1}
- problem on A_{k} (equal to A_{i} without activities that overlap a_{i+1})
- but this has already been solved according to our ordering.

Dynamic Programming: Room Scheduling

- Solving for A_{n} solves the original problem.
- Solving for A_{1} is easy.
- If you have optimal solutions S_{1}, \ldots, S_{i-1} for subproblems on A_{1}, \ldots, A_{i-1}, how to compute S_{i} ?
- Recurrence Relation:
- The optimal solution for A_{i} either
- Case 1: does not include a_{i} or
- Case 2: includes a_{i}
- Case 1: $S_{i}=S_{i-1}$
- Case 2: $S_{i}=S_{k} \cup\left\{a_{i}\right\}$, for some $k<i$.
- How to find such a k ? We know that a_{k} cannot overlap a_{i}.

DP: Room Scheduling w/ Attendees

DP-ROOM-SCHEDULING-w-ATTENDEES (s, f, t)

1. $n=$ length $[s]$
2. $N[1]=t_{1} \quad / /$ number of attendees in S_{1}
3.F[1] = $1 \quad / /$ last activity in S_{1}
4.for $i=2$ to n do
3. let k be the last activity finished before s_{i}
4. if $\left(N[i-1]>N[k]+t_{i}\right)$ then // Case 1
5. $N[i]=N[i-1]$
6. $\quad F[i]=F[i-1]$
7. else // Case 2
8. $N[i]=N[k]+t_{i}$
9. $\quad F[i]=I$
12.Output N [n]

How to output S_{n} ? Backtrack!
Time Complexity?
$\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

Approach to DP Problems

- Write down a recursive solution
- Use recursive solution to identify list of subproblems to solve (there must be overlapping subproblems for effective DP)
- Decide a data structure to store solutions to subproblems (MEMOIZATION)
- Write down Recurrence relation for solutions of subproblems
- Identify a hierarchy/order for subproblems
- Write down non-recursive solution/algorithm

Longest Common Subsequence

$$
\begin{array}{cc}
S_{1}=\text { CORIANDER } & \text { CORIANDER } \\
S_{2}=\text { CREDITORS } & \text { CREDITORS } \\
\text { Longest Common Subsequence }\left(S_{1}[1 . .9], S_{2}[1 . .9]\right)=\underline{\text { CRIR }}
\end{array}
$$

Recursive Solution

$\operatorname{LCS}\left(S_{1}, S_{2}, m, n\right)$

$/ / \mathrm{m}$ is length of S_{1} and n is length of S_{2}
// Returns length of longest common subsequence

1. If $\left(S_{1}[m]==S_{2}[n]\right)$, then
2. return $1+\operatorname{LCS}\left(S_{1}, S_{2}, m-1, n-1\right)$
3. Else return larger of
4. $\operatorname{LCS}\left(S_{1}, S_{2}, m-1, n\right)$ and $\operatorname{LCS}\left(S_{1}, S_{2}, m, n-1\right)$

Observation:

All the recursive calls correspond to subproblems to solve and they include $\operatorname{LCS}\left(S_{1}, S_{2}, i, j\right)$ for all i between 1 and m, and all j between 1 and n

Recurrence Relation \& Memoization

- Recurrence Relation:
$-\operatorname{LCS}[i, j]=\operatorname{LCS}[i-1, j-1]+1$, if $\left.\mathrm{S}_{1}[i]=\mathrm{S}_{2}[j]\right)$ $\operatorname{LCS}[i, j]=\max \{\operatorname{LCS}[i-1, j], \operatorname{LCS}[i, j-1]\}$, otherwise
- Table ($m \times n$ table)
- Hierarchy of Solutions?
- Solve in row major order

LCS Problem

LCS_Length (X, Y)

1. $m \leftarrow$ length $[X]$
2. $n \leftarrow$ Length $[\mathrm{Y}]$
3. for $i=1$ to m
4. do $c[i, 0] \leftarrow 0$
5. for $j=1$ to n
6. do $c[0, j]<0$
7. for $i=1$ to m
8. do for $\mathrm{j}=1$ to n
9. do if $(x i=y j)$
10. then $c[i, j] \leftarrow c[i-1, j-1]+1$
11. $b[i, j] \leftarrow " \pi "$
12. else if $c[i-1, j] c[i, j-1]$
13. then $c[i, j] \leftarrow c[i-1, j]$
14.
15.
16.
17.

$$
b[i, j] \leftarrow " \uparrow "
$$

else

$$
c[i, j] \leftarrow c[i, j-1]
$$

$$
\mathrm{b}[i, j] \leftarrow " \leftarrow "
$$

18. return $c[m, n]$
