Momentos

- Slides and Audio online
- Need to register
 - Go to https://fiu.momentos.life
 - If you don’t already have an account
 - Click on “Sign up”
 - Follow instructions & use referral code: XLY6FD
 - If you have an account, “Add Course” with code XLYF6D
 - Verify account using link sent to email
Why?

I am here because ...
- It’s required

Hate being here because ...
- It’s required
What do you expect to learn?
Why should I care about **Algorithms**?

Cartoon from *Intractability* by Garey and Johnson
More questions you should ask

- Who should know about Algorithms?
- Is there a future in this field?
- Would I ever need it if I want to be a software engineer or work with databases?
Why are theoretical results useful?

“I can’t find an efficient algorithm, because no such algorithm is possible!”

Cartoon from *Intractability* by Garey and Johnson
Why are theoretical results useful?

"I can't find an efficient algorithm, but neither can all these famous people."

Cartoon from *Intractability* by Garey and Johnson
Person of the Year ...
Time’s Person of the Year

2018

2017

[Image of Time magazine covers]
The first hundred votes ...

<table>
<thead>
<tr>
<th></th>
<th>48</th>
<th>12</th>
<th>9</th>
<th>12</th>
<th>23</th>
<th>12</th>
<th>22</th>
<th>12</th>
<th>12</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>12</td>
<td>12</td>
<td>93</td>
<td>12</td>
<td>93</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>93</td>
<td>48</td>
<td>48</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>33</td>
<td>79</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>93</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td>23</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>33</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>12</td>
<td>23</td>
<td>93</td>
<td>48</td>
<td>48</td>
<td>12</td>
<td>12</td>
<td>44</td>
<td>12</td>
</tr>
<tr>
<td>93</td>
<td>93</td>
<td>93</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td>23</td>
<td>12</td>
<td>55</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>48</td>
<td>12</td>
<td>48</td>
<td>48</td>
<td>12</td>
<td>48</td>
<td>88</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>93</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td>23</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>33</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Who won a majority?
Standard Approaches

- Keep a list of candidates and their counts
 - Every vote needs to be compared against every candidate in the worst case
- Sort the list and count
 - Sorting is the bottleneck
 - Can we avoid sorting?
Wacky Ideas, anyone?

What if I pick two random votes and they turn out to be different?
Evaluation

- Exams (2) 45%
- Quizzes 10%
- HW Assignments 30%
- Kattis Submissions 5%
- Semester Project 5%
- Class Participation 5%
What you should already know …

- Array Lists
- Linked Lists
- Sorted Lists
- Stacks and Queues
- Basic Sorting Algorithms

- Trees
- Binary Search Trees
- Heaps and Priority Queues
- Graphs
 - Adjacency Lists
 - Adjacency Matrices
Algorithms are “recipes”!
Algorithms can be simple