COT 5407: Introduction to Algorithms
Giri NARASIMHAN
Room Scheduling Problem

- Given a set of requests to use a room
 - [0,6], [1,4], [2,13], [3,5], [3,8], [5,7], [5,9], [6,10], [8,11], [8,12], [12,14]
- Schedule largest number of above requests in the room
- Different approaches
 - Try by hand, exhaustive search, improve an initial solution, iterative methods, divide and conquer, greedy methods, etc.
 - Simple Greedy Selection
 - Sort by start time and pick in “greedy” fashion
 - Does not work. WHY?
 - [0,6], [6,10] is the solution you will end up with.
 - Other greedy strategies
 - Sort by length of interval
 - Does not work. WHY?
Greedy Algorithms

Given a set of activities \((s_i, f_i)\), we want to schedule the maximum number of non-overlapping activities.

GREEDY-ACTIVITY-SELECTOR \((s, f)\)

1. \(n = \text{length}[s]\)
2. \(S = \{a_1\}\)
3. \(i = 1\)
4. for \(m = 2\) to \(n\) do
5. if \(s_m\) is not before \(f_i\) then
6. \(S = S \cup \{a_m\}\)
7. \(i = m\)
8. return \(S\)
Why does it work?

- **THEOREM**

 Let A be a set of activities and let a_1 be the activity with the earliest finish time. Then activity a_1 is in some maximum-sized subset of non-overlapping activities.

- **PROOF**

 Let S' be a solution that does not contain a_1. Let a'_1 be the activity with the earliest finish time in S'. Then replacing a'_1 by a_1 gives a solution S of the same size.

 Why are we allowed to replace? Why is it of the same size?

Then apply induction! How?
New Room Scheduling Problem

- **Room Scheduling with Attendee Numbers**: Given a set of requests to use a room (with # of attendees)

- Schedule requests to maximize the total # of attendees
 - Greedy Solution will be [1,4], [5,7], [8,11], [12,14]
 - And will satisfy $4 + 15 + 5 + 6 = 30$ attendees
 - Greed is not good!
Dynamic Programming

- **Old Activity Problem Revisited**: Given a set of n activities $a_i = (s_i, f_i)$, we want to schedule the maximum number of non-overlapping activities.

- **General Approach**: Attempt a recursive solution
Recursive Solution

Observation: To solve the problem on activities \(A = \{a_1, \ldots, a_n\} \), we notice that either

- optimal solution does not include \(a_n \)
 - then enough to solve subproblem on \(A_{n-1} = \{a_1, \ldots, a_{n-1}\} \)
- optimal solution includes \(a_n \)
 - Enough to solve subproblem on \(A_k = \{a_1, \ldots, a_k\} \), the set \(A \) without activities that overlap \(a_n \).
Recursive Solution

```c
int Rec-ROOM-SCHEDULING (s, f, t, n)
// Here n equals length[s];
// Input: first n requests with their s & f times & # attend
// It returns optimal number of requests scheduled
1. Let k be index of last request with finish time before s_n
2. Output larger of two values:
3. { Rec-ROOM-SCHEDULING (s, f, n-1),
    Rec-ROOM-SCHEDULING (s, f, k) + t[n] }  
// t[n] is number of attendees of n-th request
```
Observations

- If we look at all subproblems generated by the recursive solution, and ignore repeated calls, then we see the following calls:
 - \text{Rec-ROOM-SCHEDULING} (s, f, n-1)
 - \text{Rec-ROOM-SCHEDULING} (s, f, n-2)
 - ...
 - \text{Rec-ROOM-SCHEDULING} (s, f, n')
 - ...
 - \text{Rec-ROOM-SCHEDULING} (s, f, k)
 - \text{Rec-ROOM-SCHEDULING} (s, f, k-1)
 - ...
 - \text{Rec-ROOM-SCHEDULING} (s, f, k')
 - ...

- Above list includes all subproblems \text{Rec-ROOM-SCHEDULING} (s, f, i) for all values of i between 1 and n.
Dynamic Prog: Room Scheduling

- Let A be the set of n activities $A = \{a_1, \ldots, a_n\}$ (sorted by finish times).
- The inputs to the subproblems are:
 - $A_1 = \{a_1\}$
 - $A_2 = \{a_1, a_2\}$
 - $A_3 = \{a_1, a_2, a_3\}, \ldots$
 - $A_n = A$
- i-th Subproblem: Select the max number of non-overlapping activities from A_i
An efficient implementation

- Why not solve the subproblems on $A_1, A_2, ..., A_{n-1}, A_n$ in that order?
- Is the problem on A_1 easy?
- Can the optimal solutions to the problems on $A_1, ..., A_i$ help to solve the problem on A_{i+1}?

 - YES! Either:
 - optimal solution does not include a_{i+1}
 - problem on A_i
 - optimal solution includes a_{i+1}
 - problem on A_k (equal to A_i without activities that overlap a_{i+1})
 - but this has already been solved according to our ordering.
Dynamic Prog: Room Scheduling

- Solving for A_n solves the original problem.
- Solving for A_1 is easy.
- If you have optimal solutions $S_1, ..., S_{i-1}$ for subproblems on $A_1, ..., A_{i-1}$, how to compute S_i?

Recurrence Relation:
- The optimal solution for A_i either
 - Case 1: does not include a_i or
 - Case 2: includes a_i
- Case 1: $S_i = S_{i-1}$
- Case 2: $S_i = S_k \cup \{a_i\}$, for some $k < i$.
 - How to find such a k? We know that a_k cannot overlap a_i.
DP: Room Scheduling w/ Attendees

DP-ROOM-SCHEDULING-w-ATTENDEES \((s, f, t)\)

1. \(n = \text{length}[s]\)
2. \(N[1] = t_1\) \hspace{1cm} // number of attendees in \(S_1\)
3. \(F[1] = 1\) \hspace{1cm} // last activity in \(S_1\)
4. for \(i = 2\) to \(n\) do
5. let \(k\) be the last activity finished before \(s_i\)
6. if \((N[i-1] > N[k] + t_i)\) then \hspace{1cm} // Case 1
7. \(N[i] = N[i-1]\)
8. \(F[i] = F[i-1]\)
9. else \hspace{1cm} // Case 2
10. \(N[i] = N[k] + t_i\)
11. \(F[i] = 1\)
12. Output \(N[n]\)

How to output \(S_n\)? Backtrack!

Time Complexity? \(O(n \lg n)\)
Approach to DP Problems

- Write down a recursive solution
- Use recursive solution to identify list of subproblems to solve (there must be overlapping subproblems for effective DP)
- Decide a data structure to store solutions to subproblems (MEMOIZATION)
- Write down Recurrence relation for solutions of subproblems
- Identify a hierarchy/order for subproblems
- Write down non-recursive solution/algorithm
Longest Common Subsequence

$S_1 = \text{CORIANDER}$

$S_2 = \text{CREDITORS}$

Longest Common Subsequence($S_1[1..9], S_2[1..9]$) = CRIR
Recursive Solution

LCS(S_1, S_2, m, n)
// m is length of S_1 and n is length of S_2
// Returns length of longest common subsequence
1. If ($S_1[m] == S_2[n]$), then
2. return 1 + LCS(S_1, S_2, m-1, n-1)
3. Else return larger of
4. LCS(S_1, S_2, m-1, n) and LCS(S_1, S_2, m, n-1)

Observation:
All the recursive calls correspond to subproblems to solve and they include LCS(S_1, S_2, i, j) for all i between 1 and m, and all j between 1 and n
Recurrence Relation & Memoization

- **Recurrence Relation:**
 - $LCS[i,j] = LCS[i-1, j-1] + 1, \text{ if } S_1[i] = S_2[j]$)
 - $LCS[i,j] = \max \{ LCS[i-1, j], LCS[i, j-1] \}, \text{ otherwise}$

- **Table (m X n table)**

- **Hierarchy of Solutions?**
 - Solve in row major order
LCS Problem

LCS_Length (X, Y)
1. m \leftarrow \text{length}[X]
2. n \leftarrow \text{Length}[Y]
3. for i = 1 to m
4. do \(c[i, 0] \leftarrow 0 \)
5. for j = 1 to n
6. do \(c[0, j] \leftarrow 0 \)
7. for i = 1 to m
8. do for j = 1 to n
 9. do if \(x_i = y_j \)
 10. then \(c[i, j] \leftarrow c[i-1, j-1] + 1 \)
 11. \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} b[i, j] \leftarrow "\leftarrow"
 12. else if \(c[i-1, j] \leq c[i, j-1] \)
 13. then \(c[i, j] \leftarrow c[i-1, j] \)
 14. \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} b[i, j] \leftarrow "↑"
 15. else
 16. \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} c[i, j] \leftarrow c[i, j-1]
 17. \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} b[i, j] \leftarrow "←"
8. return \(c[m,n] \)