COT 5407: Introduction

to Algorithms

Giri NARASIMHAN
www.cs fiu.edu/~giri/teach/5407S19.htmi

http://www.cs.fiu.edu/~giri/teach/5407S19.html

Solving Recurrences using Master
Theorem

Master Theorem:

Let a,b >= 1 be constants, let f(n) be a function, and let
T(n) = aT(n/b) + f(n)
. If f(n) = O(nlog a-¢) for some constant >0, then

» T(n) = Theta(nlog,)

2. If f(n) = Theta(nleg a), then
» T(n) = Theta(nlog, 2 log n)

3. If f(n) = Omega(nlcg a+e) for some constant e>0, then
= T(n) = Theta(f(n))

COT 5407

Solving Recurrences by Substitution

» Guess the form of the solution

» (Using mathematical induction) find the constants and show that the
solution works

mple

T(n) = 2T(n/2) + n
Guess (#1) T(n) = O(n)
Need T(n) <=cn for some constant ¢>0
Assume T(n/2) <= cn/2 Inductive hypothesis
Thus T(n) <=2cn/2+n=(c+1)n
Our guess was wrong!!

COT 5407 1/17/17

Solving Recurrences by Substitution: 2

T(n) = 2T(n/2) + n
Guess (#2) T(n) = O(n2)
eed T(n) <= cn2 for some constant ¢>0
Assume T(n/2) <= cn2/4 Inductive hypothesis
Thus T(n)<=2cn2/4 +n=cn2/2+n

Works for all n as long as ¢c>=2 1

But there is a lot of “slack”

Solving Recurrences by Substitution: 3

T(n) = 2T(n/2) + n

Guess (#3) T(n) = O(nlogn)
Need T(n) <= cnlogn for some constant ¢c>0
ssume T(n/2) <=c(n/2)(log(n/2)) Inductive hypothesis
Thus T(n) <=2 ¢(n/2)(log(n/2)) + n

<= cnlogn -cnh + n <= cnlogn
Works for all n as long as ¢>=1 !l
This is the correct guess. WHY?
Show T(n) >= c’nlogn for some constant ¢’>0

COT 5407 1/17/17

Recurrence; Cond

Solution

T(n) =T(n—-1)4+ 0O(1)

T{n) = O(n)

Tn) =T(n—-1)4+ O(n)

T(n) = O(n?)

'1:(‘1'1,:) — ’_1’(71. =5 (‘:) -+ ()(1)

T(n) = OC(n)

T(n) =T(n—c¢)+ O(n)

T(n) = O{n?)

T(n) =2T(n/2) + O(n)

T(n) =0O(nlogn)

T(n) = a'](w/b) + O(n);

n=h

T(n) = O(nlogn)

T(n) =aT(n/b) + O(n);

a < b

T(n) =0O(n)

T(n) = eT(n/b) + f(n);
f(‘”) = (—)(-n,_logb a—(-)

T(n) =0(n)

T(n) =aT(nfb) + f(n),
F(n) = O(nl0%a)

T(n) = ©(n'°%* logmn)

T(n) =aT(n/b) + f(n),
f(n) =9(f(n))
_q,.,r(-n,/b) i (:_f(:').)

T(n) = Q(n'°%2 logn)

Solving Recurrence Relations

Sorting Algorithms

SelectionSort
InsertionSort
BubbleSort
ShakerSort
MergeSort
HeapSort
QuickSort

Bucket & Radix Sort
Counting Sort

COT 5407 9/4/08

Sorting Algorithms

» Number of Comparisons
» Number of Data Movements
Additional Space Requirements

OOOOOOO

9/4/08

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MERGE(A, p, g, r)

]

> 2N Ne o LW B Y &) TN =S B S

J

r

13
14
15

16
7

n <«<—qg—p+1
2y = ==

Assumption: Array A is sorted from [p..q]
and from [g+1..r].

create arrays L[1..n; + 1]land R[1..n; + 1]

fori < 1to n,

do L[i] < A[p+i— 1]

for j < 1ton,

do R[j] < Alg + j]

[.[n + 1] « 2
R[n, + 1] « ¢
[«— 1
i<
fork < ptor
doif L[i] <R
then A[L]

] e

j]
— L[i]
I + 1

clse A[k]

~— R[]

o)

Space: Two extra arrays L and R are
used.

Sentinel Items: Two sentinel items
placed in lists L and R.

Merge: The smaller of the item in L and
item in R is moved to next location in A

Time : O(length of lists)

QUICKSORT(array A,int p,int r)
if (p <)
then g «— PARTITION(A, p, 1)
QUICKSORT(A,p,q — 1)
QUICKSORT(A,q+ 1,7)

QuickSort

—_— N =

Tosort array call QUICKSORT(A, 1, length|A]).

PARTITION(array A, int p,int v

1z« Alr] >~ Choose pivot

2 1+—p—1

3 forj«—ptor—1

1 do it (A[j] < x)

5 then¢ « 2+ 1

6 exchange A[i] < A[j]

7 exchange Al + 1] < A[r] Page 146, CLRS
8§ return:+ |

Lower Bounds

= |'s possible to prove lower bounds for many comparison-based
problems.

= For comparison-based problems, for inputs of length N, if there are P(N)
possible solutions, then

any algorithm needs IobnggNn to }olve the problem.

Binary Search on a list of N items has at least N + 1 possible solutions.
Hence lower bound is

» |og,(N+1).
= Sorting a list of N items has at least N! possible solutions. Hence lower
bound is
= |og,(N!)=O(N log N)
= Thus, MergeSort is an optimal algorithm.
» Because its worst-case time complexity equals lower bound!

COT 5407 1/19/17

k-Selection: Median

» Select the k-th smallest item in list

Naive Solution
» Sort;
» pick the k-th smallest item in sorted list.
O(n log n) time complexity

» |dea: Modify Partition from QuickSort

» How?
=» Randomized solution: Average case O(n)
» |mproved Solution: worst case O(n)

COT 5407

9/30/08

More Dynamic Operations
| seach | nsert | Delefe Comments

Unsorted Arrays O(N) O(1) O(N)

Sorted Arrays O(log N} O(N) O(N)

Qnsorfed Linked O(N] o(1) O(N]

Lists

Sorted Linked Lists O(N) O(N) O(N)

Binary Search Trees O(H) O(H) O(H) H = O(N)
Balanced BSTs O(logN) OflogN) OflogN) AsH=0O(logN)
Balanced BSTs O(log N) O(N) O(N)

Augmented BBSTs O(log N) Of(logN) Of(log N)

OS-Rank
OS-RANK(x,y)
// Different from text (recursive version)
// Find the rank of x in the subtree rooted at y
1 r=size[lefty]] + 1
if x =y thenreturnr
3 else if (key[x] < key[y]) then
4 return OS-RANK(x, left[y])
5 elsereturnr + OS-RANK(x,right[y])

Time Complexity O(log n)

COT 5407

2/2/17

OS-Select

OS-SELECT(x,i) //page 304

// Select the node with rank i

// in the subtree rooted at x

. r=size[left[x]]+1

. ifi=rthen

return x

. elseif i <rthen

: return OS-SELECT (left[x], i)

. else return OS-SELECT (right[x], i-r)

Time Complexity O(log n)

2/2/17

How to augment data structures

1. choose an underlying data structure

2. determine additional information to be
maintained in the underlying data structure,

3. develop new operations,

4. verify that the additional information can be
maintained for the modifying operations on
the underlying data structure.

OOOOOOO

2/2/17

Augmenting RB-Trees

Theorem 14.1, page 309

Let f be a field that augments a red-black tree T with n nodes,
and f(x) can be computed using only the information in
nodes Xx, left[x], and right[x], including f[left[x]] and f[right[x]].

Then, we can maintain f(x) during insertion and deletion
without asymptotically affecting the O(log n) performance of
these operations.

For example,
size[x] = size[left[x]] + size[right[x]] + 1
rank[x] = ?

COT 5407 2/2/17

Augmenting information for RB-Trees

» Parent
» Height

Any associative function on all previous
values or all succeeding values.

» Nexi
=» Previous

OOOOOOO

2/2/17

Approach to DP Problems

» Write down a recursive solution

» Use recursive solution to identify list of
subproblems to solve (there must be overlapping
subproblems for effective DP)

Decide a data structure to store solutions to
subproblems (MEMOIZATION)

=» Write down Recurrence relation for solutions of
subproblems

» |dentify a hierarchy/order for subproblems
= Write down non-recursive solution/algorithm

COT 5407 2/9/17

®» (Classification based on the dimension of the table
used to store solutions to subproblems.

»]-dimensional DP
Activity Problem

2-dimensional DP
» LCS Problem
» (-1 Knapsack Problem
» Matrix-chain multiplication
» 3-dimensional DP
» All-pairs shortest paths problem

COT 5407

1-d, 2-d, 3-d Dynamic Programming

2/9/17

1. Recurrence Relations

1. [30] Short Questions

(a) [5-10 minutes| Prove or disprove

3n(logn)® + 4n = O(2n®logn + 1).
(b) [5-10 minutes| Prove or disprove

3n(logn)? + 4n = Q(2n°logn + 1).

CAP 5510 / CGS 5166 2/26/19

1. More Recurrence Relations

¢) [5-10 minutes| Solve the following recurrence relation using any of the 3 methods
we have discussed in class:

T'(n) = wl (4n/5) + O(n)

15-10 minutes| Solve the following recurrence relation using any of the 3 methods
we have discussed in class:

T'(TI'(4n/T) + O(1

CAP 5510 / CGS 5166 2/26/19

RB-Trees

(e) [10 minutes| Insert the following integer values into an initially empty red-black
e. Show your steps and vour work for partial credit.

7,17,23,6,5,27,31, 3,4, 32

CAP 5510 / CGS 5166 2/26/19

Have my cake and eat it too ...

2. [15 minutes] For my birthday, I got a cake 2 feet in length and of small width. The
cake could only be cut perpendicular to its longest side. I had n people at the party
excluding me. My nerdy friends devised a strange way to divide the cake. Each person

at the party (excluding me) wrote down a real number between () and 2.0 and I had to

make a cut of the cake at that distance from the left end of the cake (one of the two

§ was designated as the “left end” of the cake). At the end of this process I had

made n cuts leaving n + 1 pieces. Since it was my birthday, I got to eat the largest of

the n + 1 pieces.

For example, if n = 4, and the cuts were made at 0.6511123, 1.3, 0.454545, and 1.99,
then the longest of the 5 pieces would be of length 0.69 feet.

Given as input the real numbers written down by each of the n people at the party,
design an algorithm that outputs the length of the piece that I consumed. Analyze its
time complexity. 2126119

Finding k poor students

3. [20 minutes| I have access to the GPA of all the n students in the class. You may
assume that the GPA is a real number. The dean has asked me to identifv the &
students from this class (k is an integer in the range [0..n — 1]) with the lowest GPA
and to provide the list in the order of increasing GPA. Your task is to design an efficient
orithm that takes as input the n GPA values and the integer £, and outputs the
equired information. Analyze its time complexity (in terms of n and £). Note that k
is an arbitrary number in the range [0..n — 1].

(a) k= 0(1)
(b) k= 0O(/n)
(¢) k=0(n)

CAP 5510 / CGS 5166 2/26/19

