
A Quantitative Comparison of Parallel
Computation Models

BEN H. H. JUURLINK
Delft University of Technology
and
HARRY A. G. WIJSHOFF
Leiden University

In recent years, a large number of parallel computation models have been proposed to replace
the PRAM as the parallel computation model presented to the algorithm designer. Although
mostly the theoretical justifications for these models are sound, and many algorithmic results
were obtained through these models, little experimentation has been conducted to validate the
effectiveness of these models for developing cost-effective algorithms and applications on
existing hardware platforms. In this article a first attempt is made to perform a detailed
experimental account on the preciseness of these models. To achieve this, three models (BSP,
E-BSP, and BPRAM) were selected and validated on five parallel platforms (Cray T3E,
Thinking Machines CM-5, Intel Paragon, MasPar MP-1, and Parsytec GCel). The work
described in this article consists of three parts. First, the predictive capabilities of the models
are investigated. Unlike previous experimental work, which mostly demonstrated a close
match between the measured and predicted execution times, this article shows that there are
several situations in which the models do not precisely predict the actual runtime behavior of
an algorithm implementation. Second, a comparison between the models is provided in order
to determine the model that induces the most efficient algorithms. Lastly, the performance
achieved by the model-derived algorithms is compared with the performance attained by
machine-specific algorithms in order to examine the effectiveness of deriving fast algorithms
through the formalisms of the models.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessor); C.4 [Computer Systems Organization]: Performance of
Systems—modeling techniques; D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming

General Terms: Experimentation, Performance

This research was supported in part by DFG-SFB 376 “Massive Parallelität” and EU ESPRIT
Long Term Research Project 20244 (ALCOM-IT). Ben H. H. Juurlink was affiliated with
Leiden University and, subsequently, with Paderborn University when this work was per-
formed. Preliminary versions of this article appeared in SPAA’96 and IPPS/SPDP’98.
Authors’ addresses: B. H. H. Juurlink, Laboratory of Computer Architecture and Digital
Techniques, Department of Electrical Engineering, Delft University of Technology, Mekelweg
4, 2628 CD Delft, The Netherlands; H. A. G. Wijshoff, High Performance Computing Division,
Department of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden, The
Netherlands.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 0734-2071/98/0800–0271 $5.00

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998, Pages 271–318.



Additional Key Words and Phrases: Parallel computation models, performance evaluation

1. INTRODUCTION
Parallel algorithmic research has long been burdened by the lack of a
standard model of parallel computation. Such a model should on the one
hand be simple enough to disclose fundamental parallel algorithmic tech-
niques. On the other hand, it should accurately reflect the cost of executing
parallel programs on existing and foreseeable parallel architectures [Skil-
licorn 1991; Heywood and Ranka 1992]. In addition, the model should not
be tied to a particular architecture, so that algorithms developed for it will
be portable across platforms. We note that there are two aspects to
portability. First, not all parallel platforms support the same programming
language or message-passing interface. This problem seems to be resolved
by widely available message-passing libraries like PVM [Geist et al. 1994]
and MPI [The MPI Forum 1993]. However, a more fundamental problem is
that many parallel programs are architecture dependent, meaning that they
are customized for a particular architecture in order to achieve the highest
performance. The result of this practice is that parallel programs cannot be
ported across platforms without incurring a large performance penalty.

The PRAM [Fortune and Wyllie 1978] is the prevailing model in the
theoretical community. Its shared-memory abstraction and the assumption
that the processors operate fully synchronously make it a relatively easy
model to use. The PRAM also provides a very simple cost model. Each step,
regardless of whether it is a local computation step or an access to the
shared memory (communication step), is assumed to take unit time. On
many existing parallel architectures, however, communication is much
more expensive than local computations, and synchronization is also very
expensive. A large body of parallel algorithms has also been developed for
theoretical network models, in which it assumed that it takes unit time to
send a packet between adjacent processors. This does not seem to be a
promising approach either, because it leads to nonportable programs.

For these reasons, several alternative models have been proposed that
try to capture communication and synchronization cost without sacrificing
too much of the PRAM’s simplicity and generality. Although mostly the
theoretical justifications for these models are sound, and many algorithmic
results were obtained through these models, little experimentation has
been conducted in order to examine the effectiveness of deriving fast
algorithms through the formalisms of the models. This article tries to fill
that gap by experimentally validating three of the proposed parallel
computation models on five parallel platforms. Our investigation concen-
trates on three questions. First, do the models accurately predict the
execution time of an algorithm implementation? Obviously, the ability to
accurately predict the runtime behavior of a parallel program is a crucial
property that a parallel computation model must possess, since it enables

272 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



the algorithm developer to pick the fastest algorithm from a set of alterna-
tives without having to implement them all. Second, how do the models
compare with each other? In other words, we would like to determine the
model that induces the fastest algorithms. Third, how do the model-derived
algorithms compare with algorithms customized for the target architec-
ture? It seems that the price to be paid for portability is performance, but
what is the performance loss that can be expected? Indeed, there is little
prospect that parallel software developers will adopt a new model if it does
not induce algorithms that are nearly as efficient as programs customized
for the target architecture.

To answer these questions we selected three problems (matrix multipli-
cation, sorting, and all pairs shortest path), designed algorithms for them
based on the precepts of the models, and implemented these algorithms on
five parallel platforms: a Cray T3E, an Intel Paragon, a Thinking Machines
CM-5, a MasPar MP-1, and a Parsytec GCel. The problems were picked for
two reasons. First, they are a key component of many parallel applications.
Second, they are relatively easy and well understood, so that a precise
analysis under the various models is feasible. The hardware platforms were
chosen because they represent a wide range of different realizations of
parallel distributed-memory architectures. Because of the fact that the
scalability properties of the parallel computation models are used through-
out the article, we did not include any physically shared memory platforms
into this study.

1.1 Related Work

The paper introducing the LogP model [Culler et al. 1993] presented
execution times for an FFT algorithm implemented on the CM-5. The
measured times showed a close match with the predicted execution times,
provided the processors were synchronized periodically using the hardware
barrier available on the CM-5. Several LogP sorting algorithms were
analyzed analytically and empirically in Culler et al. [1994a].

The BSP model was analyzed experimentally in Goudreau et al. [1996].
We have the following remarks about the experimental data presented
there. First, the authors noted that the BSP cost model should not be
expected to predict precise running times, since this is only possible for
fairly simple algorithms such as sorting and broadcast. We remark that the
algorithms we experimented with (purposely) belong to the class of algo-
rithms for which a precise analysis seems feasible. Second, as was acknowl-
edged in Goudreau et al. [1996], the results were collected on platforms
with a small number of processors (at most 16). As will be shown in this
article, several phenomena that might affect the accuracy of the BSP cost
model do not become visible until at least a moderate number of processors
are employed. Finally, as was also mentioned in Goudreau et al. [1996], for
most applications considered there the communication overhead was only a
small component of the total execution time. We are interested in cases
where the communication overhead accounts for a significant part of the

A Quantitative Comparison of Parallel Computation Models • 273

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



overall running time, since it is the only cost captured in detail by most
parallel computation models.

Skillicorn et al. [1997] measured the BSP parameters belonging to
several platforms. It is unclear to us whether these parameters were
obtained by measuring the time required for sending large messages or for
short messages. Because the BSP model does not penalize fine-grain
communication, we used a packet size equal to the word size of the
machine.

Shumaker and Goudreau [1997] described an implementation of a BSP
library on the MasPar MP-2. Their results our difficult to compare to ours,
because they normalized the BSP parameters to the time it takes to
multiply two 32-bit floating-point numbers.

1.2 Organization

This article is organized as follows. In Section 2 the parallel computation
models considered in this article are described. After that, in Section 3, the
experimental platforms are described as well as the experiments conducted
to determine the model parameters belonging to each platform. The imple-
mented algorithms are described and analyzed in Section 4. Thereupon, in
Section 5, the predictive capabilities of the models are investigated. A
comparison between the models is provided in Section 6, and in Section 7
the performance achieved by the model-derived algorithms is compared
with the performance attained by machine-specific algorithms in order to
validate the efficiency of the model-derived algorithms. Conclusions are
given in Section 8.

2. MODEL DESCRIPTIONS

In this section, the parallel computation models considered in this article
are briefly reviewed.

2.1 BSP

The Bulk-Synchronous Parallel (BSP) model proposed by Valiant [1990] is
a model that has received considerable attention over the last few years. It
consists of the following attributes: (1) a set of p processors with local
memories, (2) a communication medium (router) that can deliver messages
between any pair of processors, and (3) a mechanism to synchronize the
processors in a barrier style. BSP computations are organized in a series of
phases called supersteps. In a superstep a processor can perform local
operations and send messages to other processors. Supersteps are sepa-
rated by a barrier synchronization, after which it is assured that all
messages have reached their destinations. This programming model is
different from the one provided by most message-passing libraries like
PVM [Geist et al. 1994] or MPI [The MPI Forum 1993]. These libraries are
based on pairwise sends and receives, whereas in the BSP model explicit
receives are unnecessary. Instead, a barrier synchronization signifies the
end of all communication operations.

274 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



The cost of a BSP computation depends on the following parameters that
characterize the communication capabilities of the architecture: the com-
bined latency/synchronization cost L and the computational-to-communica-
tion bandwidth ratio g, which is defined as the ratio of local operations
performed by all processors in one time unit to the total number of
messages delivered by the router in one time unit. Central to the BSP
model is the concept of an h-relation: a communication pattern in which
each processor sends and receives at most h messages. The parameters g
and L are such that an arbitrary h-relation followed by a barrier synchro-
nization can be performed in g z h 1 L time. The cost of a superstep is
therefore given by w 1 g z h 1 L, where w is the maximum amount of
local work performed by any processor during the superstep, and h is the
maximum number of messages sent or received by any processor. McColl
[1993] also includes a speed parameter s which is defined as the number of
operations performed per time unit. We decided not to include this param-
eter because it depends very much on the application domain. We also do
not normalize g and L with resect to processor speed, as is done tradition-
ally, but use actual times (in msec.) instead.

2.2 BPRAM

In the BSP model it is assumed that all messages have a fixed short size
(essentially the word size of the machine). However, it is well known that
on many parallel architectures there is a large startup cost associated with
transmitting a message. The Message-Passing Block PRAM (BPRAM, for
short) [Aggarwal et al. 1989] is a model in which block transfers are
rewarded. Briefly, a BPRAM consists of p processors, each provided with a
local memory of unbounded size, that communicate with each other by
exchanging messages. A processor can send and receive only one message
in one communication step (i.e., every communication pattern should
correspond to a (partial) permutation), and a message of length m is
transferred in time m 1 ,, where , is the startup cost of a message
transmission. Furthermore, the model is synchronous, meaning that every
processor waits for the longest block transfer to complete before it proceeds
to the next step. Because generally computation and communication are
not equally expensive, we model the time to send an m-byte message by the
formula s z m 1 ,, where s is the transfer time per byte.

2.3 E-BSP

The BSP as well as the BPRAM assume that the time needed for commu-
nication is independent of the network load. The BSP model conservatively
assumes that all h-relations are full h-relations in which all processors
send and receive exactly h messages. Likewise, in the BPRAM it is
assumed that sending one m-byte message between two processors takes
the same amount of time as a full block permutation in which all processors

A Quantitative Comparison of Parallel Computation Models • 275

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



send and receive an m-byte message. The E-BSP model [Juurlink and
Wijshoff 1996c] extends the basic BSP model to deal with unbalanced
communication patterns, i.e., communication patterns in which the proces-
sors send or receive different amounts of data.

Like BSP, the E-BSP model is strongly motivated by various routing
results. Furthermore, the cost function supplied by E-BSP generally is a
nonlinear function that strongly depends on the network topology. We
therefore employ the following simplified version of E-BSP in this article.
Let an ~V, h!-relation be a communication pattern in which each processor
sends and receives at most h messages, and in which the total number of
messages being routed does not exceed V (the communication volume).
Further, let an h-item scatter operation be a communication pattern in
which one processor scatters h data items evenly among the processors so
that each processor receives h / p items (arguably a very unbalanced
h-relation), and let g9 be such that an arbitrary h-item scatter operation
takes g9 z h 1 L time. In the E-BSP model, every communication pattern is
treated as an ~V, h!-relation with cost max$ g z V/p, g9 z h% 1 L, where g
and L are identical to BSP’s parameters. Thus, the parameter g9 essen-
tially captures node-to-network bandwidth, whereas g captures intranet-
work bandwidth. Note that this cost model essentially differentiates be-
tween communication patterns that are insensitive to the bisection
bandwidth and those that are not.

2.4 Other Models

Of course, there are many other models which are not considered in this
article. In this section, we briefly mention a few of them.

A model which is similar to BSP is the LogP model [Culler et al. 1993].
There are three differences between the two models. First, LogP is com-
pletely asynchronous whereas BSP can be classified as “semisynchronous.”
Second, LogP has an extra overhead parameter that represents the time a
processor is engaged in transmitting a message. Third, it is assumed that
the communication network has a finite capacity such that only a limited
number of messages can be in transit to or from any processor at any time.
LogP is not considered in this article for the following reasons. The
algorithms described in Section 4 do not attempt to overlap computation
and communication. The overhead parameter can therefore be ignored.
Furthermore, the BSP library implemented on the Paragon and the Gcel
sends messages in a staggered order, whereas the implementation of
BSPlib on the T3E uses a Latin square [Skillicorn et al. 1997]. For the
algorithms we experimented with, this technique was sufficient to ignore
the capacity constraint of LogP. It will be shown, however, that in one case
the capacity constraint helps to explain the differences between predicted
and observed running times.

The models considered here also do not allow topological locality (net-
work proximity) to be exploited. Such models include the H-PRAM [Hey-

276 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



wood and Ranka 1992], the Y-PRAM [de la Torre and Kruskal 1991], and
the original E-BSP model. These type of models are not considered for the
following reasons. First, on the MasPar we exclusively used the global
router for communication which is an indirect network that does not allow
network proximity to be exploited. Second, the processor numbering on the
CM-5 was proprietary. Furthermore, the configurations of the T3E and the
Paragon were too small to notice a significant difference between the time
required for routing a random communication pattern and a more local
routing distribution. On the GCel, however, the model-derived matrix
multiplication algorithms will be compared with an algorithm that requires
only near-neighbor communication in order to investigate the price of
giving up network proximity.

3. EXPERIMENTAL PLATFORMS

In this section, the experimental platforms are described, and the values of
the model parameters are determined. In an earlier paper, a limited study
for a T800 platform was conducted [Juurlink and Wijshoff 1993].

3.1 Intel Paragon

The Intel Paragon [Groscup 1992] is a MIMD computer with a mesh
topology. Each node is a shared-memory multiprocessor with two (some-
times three) 50MHz i860XP microprocessors, connected by a 400MB/sec.,
cache-coherent memory bus. One processor, called the message processor, is
dedicated to communication, so that the compute processor is released from
message-passing operations. All experiments were conducted on an 8 3 8
configuration.

In order to implement the algorithms in a BSP- and BPRAM-like fashion,
we implemented two small communication libraries on top of the native NX
message-passing library. The implemented BSP library is similar to the
recently released BSPlib library [Hill et al. 1997]. Basically, it provides
functions for Direct Remote Memory Access (DRMA) (bsp _store ), Bulk-
Synchronous Message Passing (BSMP) (bsp _send ), and barrier synchroni-
zation (bsp _sync ). In previous experiments on the Paragon [Juurlink
1998], we determined that the startup cost of a message transmission is
roughly 146 msec. whereas the transfer time per byte is about 11.5 nsec.
For this reason, the implementation of the BSP library postpones all
communication until the end of the superstep (by writing the messages in
an output buffer associated with the destination processor), and combines
all packets destined for the same processor into a single message. It has
been shown in Skillicorn et al. [1997] that this technique reduces the
importance of sending large messages.

Figure 1 plots the times required for routing full h-relations as well as
the times needed for performing h-item scatter operations on the Paragon.
The minimum and maximum measured times are also shown using vertical
error bars. Because the BSP cost model does not penalize fine-grain

A Quantitative Comparison of Parallel Computation Models • 277

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



communication, we used a packet size equal to the word size of the machine
(four bytes). The curve labeled “DRMA” shows the time needed when the
DRMA function bsp _store is used, whereas the curve labeled “BSMP”
plots the time when bsp _send is used. The scatter operation was imple-
mented using bsp _store . By fitting straight lines to the measured data
points, we determined that the BSP parameters belonging to the Paragon
are given by g 5 5.42 msec. and L 5 1.95 3 104 msec., and that E-BSP’s
additional parameter is given by g9 5 3.13 msec. Two important remarks
concerning the experimental data need to be made. First, the latency/
synchronization cost L is relatively high. This is because the startup cost of
a message transmission is relatively high on this platform, and the cost of
p 2 1 startups are folded into L. Second, the bandwidth parameter g is not
limited by the network capacity. Instead, the bulk of the cost of sending a
packet is due to copying the packet into the output buffer and out of the
input buffer. This is also the main reason why an h-item scatter operation
is about a factor of 1.7 cheaper than a full h-relation, since in this pattern
every processor receives only h / p instead of h packets.

The implemented BPRAM library provides only one communication prim-
itive that sends a message to a specified destination processor and receives
a message from an arbitrary processor. In keeping with the BPRAM
semantics, all processors must call this function simultaneously in order to
prevent deadlock, and the communication pattern must correspond to a
(partial) permutation. Furthermore, a global synchronization is executed
after every communication step for two reasons. First, the communication
primitive does not use tags to distinguish messages. Therefore, in order to
be sure that the program is semantically correct, a global synchronization
is needed. Second, the BPRAM cost model assumes that the time needed for
a communication step depends linearly on the size of the largest message.

Fig. 1. Time required for routing full h-relations and for scatter operations on the Paragon.

278 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



Figure 2 plots the time needed for performing full block permutations on
the Paragon as a function of the message length. It also shows the time
needed for a communication pattern that does not saturate the network: a
“single message send” in which one processor sends an m-byte message to
another processor. The measurements indicate that the BPRAM parame-
ters belonging to the Paragon are given by s ' 3.72 3 1022 msec. and ,
' 1.23 3 103 msec. Furthermore, a single message send is a factor of 3.44
cheaper than a full block permutation. We note that this is only partially
due to bisection bandwidth limitations, since when the two processors send
an m-byte message to each other simultaneously, the communication time
approximately doubles. Thus, it appears that the links connecting the
processors to the routing network are only half-duplex. The reader is
referred to Juurlink [1998] for a more complete explanation of the experi-
mental data on the Paragon. The BSP, E-BSP, and BPRAM parameters
belonging to the Paragon are summarized in Table I.

3.2 Parsytec GCel

The second experimental platform is a 64-processor Parsytec GCel [Lang-
hammer 1992], an 8 3 8 mesh-connected MIMD computer. Every proces-
sor is a T805 transputer, running at 30MHz, with 4MB of RAM. The BSP
and BPRAM library described in the previous section were also imple-
mented on the GCel on top of the native message-passing library Parix.

Figure 3 plots the time required for routing randomly generated full
h-relations on the GCel. It can be seen that the time needed for routing
h-relations grows linearly with h up to a certain point. After that, it stays
approximately constant, and finally it grows linearly with h again, but with
a smaller slope than before. This behavior is due to the Parix message-
passing functions SendNode/RecvNode on top of which the BSP library
was implemented. For messages up to 1KB, Parix uses a store-and-forward

Fig. 2. Time needed for full block permutations and for sending one message on the Paragon.

A Quantitative Comparison of Parallel Computation Models • 279

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



mechanism for routing messages through the network, whereas for larger
messages, a temporary virtual link is established. In order to avoid that
this effect disturbs the accuracy of the predictions, we approximate the
time needed for routing h-relations on the GCel by the piecewise linear
function shown in Figure 3. For example, when bsp _store is used, the
following function is used to model the time needed for routing h-relations:

T~h! 5 5 172.7 z h 1 2.6 3 105 msec. for h # 4500
1.04 3 106 for 4500 , h , 7000
118.5 z h 1 2.1 3 105 msec. for h $ 7000.

The value of g9 on this architecture is given by g9 5 87.9 msec. for h #

5300 and g9 5 47.8 msec. otherwise.
Three other important conclusions can be drawn from Figure 3. First, the

cost of routing h-relations using bsp _send is about two-thirds the cost of
performing h-relations using bsp _store . This is to be expected, since 12
bytes of data (target address, packet length, and packet data) are sent for
every 4-byte data word when bsp _store is used, whereas 8 bytes of data
(packet length and packet data) are sent when bsp _send is used. Second,
the packet combining technique has reduced the value of g by a factor of
about 13.8 compared to a previous implementation of the BSP library that
sent messages as soon as they were generated [Juurlink and Wijshoff
1996a]. The value of L, however, has increased by a factor of about 5.7.
This is due to the fact that L now includes the startup cost of p 2 1
message transmissions. Third, a scatter operation is about a factor of 2.5
cheaper than a full h-relation, thereby showing the effects of unbalanced
communication.

The times needed for routing full block permutations on the GCel are
shown in Figure 4. By fitting a straight line to the measured data points,
we determined that the BPRAM parameters belonging to the GCel are
given by s ' 8.5 msec. and , ' 1.6 3 104 msec. Again, it can be observed

Table I. Summary of All Platforms and Parameters. Summary of the BSP (using DRMA),
E-BSP (also using DRMA), and BPRAM parameters belonging to each platform. All

parameters are given in msec. For the GCel, only the g and g9 parameters obtained for
routing large h-relations and scatter operations are shown. The ratio g/(w z s) (on the

MasPar under the MP-BSP model the ratio (g1 L)/(w z s)) is an indication of the gain that
can be obtained by grouping data into large messages, where w is the word size of the

machine (8 on the T3E and 4 on all other platforms).

(MP-)BSP E-BSP BPRAM

Platform p g L g9 s , g/~w z s!

Paragon 64 5.42 1.95 3 104 3.13 3.72 3 1022 1.23 3 103 36.4
GCel 64 118.5 2.1 3 105 47.8 8.5 1.6 3 104 3.5
T3E 8 1.10 36.9 0.69 4.94 3 1023 11.7 27.8
CM-5 64 9.1 45 6.3 2.75 3 1021 75 8.3
MasPar 1024 32.2 1.4 3 103 — 1.07 3 102 6.3 3 102 5.7

280 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



that for short messages the execution time tends to increase more rapidly
than for long messages. Figure 4 also shows the time needed for a single
message send. Asymptotically, this communication pattern is a factor of
about 5.7 cheaper than a full block permutation.

3.3 Cray T3E

The Cray Research T3E [Oberlin et al. 1996] is a MIMD parallel computer
with a 3D torus interconnect network. Each node consist of a DEC Alpha
21164 RISC microprocessor, multiple banks of DRAM, and a network
router. All experiments were conducted on an eight-processor configura-
tion. The BSP programs for the T3E were implemented using the BSPlib
library [Hill et al. 1997], and the BPRAM library described in Section 3 was

Fig. 3. Time required for routing full h-relations and for performing scatter operations on the
GCel.

Fig. 4. Time required for routing full block permutations and for sending one message on the
GCel.

A Quantitative Comparison of Parallel Computation Models • 281

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



also implemented on the T3E. Both of these libraries are implemented on
top of the native, explicit shared-memory (SHMEM) communication func-
tions shmem_put and shmem_get .

Figure 5 shows the fine-grain communication performance of the T3E. As
usual, the times needed for routing full h-relations using the BSPlib DRMA
function bsp _hpput and the BSMP function bsp _send are depicted, as
well as the times needed for performing scatter operations. It is conspicu-
ous that on this platform bsp _send is almost a factor of 3.9 slower than
bsp _hpput . We believe that this is due to the fact that packets that are
sent using bsp _send are buffered on the source and destination, whereas
no buffering is needed for bsp _hpput , since it can be implemented directly
on top of shmem_put . It can also be seen that scatter operations are about a

Fig. 6. Time needed for routing full block permutations and for sending one message on the
T3E.

Fig. 5. Time required for routing full h-relations and for performing scatter operations on the
T3E.

282 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



factor of 1.6 cheaper than full h-relations, but this should again be
attributed to send and receive overheads and not to congestion in the
network.

Figure 6 shows the bulk message-passing performance of the T3E. From
the measured data points, we determined that the BPRAM parameters
belonging to the T3E are given by s ' 4.94 3 1023 msec. and , ' 11.7
msec. Furthermore, a single message send is about a factor of 1.6 cheaper
than a full block permutation.

3.4 CM-5

The Thinking Machines CM-5 [Leiserson et al. 1992] is a MIMD parallel
computer with a fat-tree interconnection network. Each node contains a

Fig. 7. Time required for routing full h-relations and for performing scatter operations on the
CM-5.

Fig. 8. Time required for routing full block permutations and for sending one message on the
CM-5.

A Quantitative Comparison of Parallel Computation Models • 283

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



32MHz Sparc Cypress processor, 32MB of local memory, a 64KB direct-
mapped cache, and a network interface chip. In addition to the data
network, a broadcast/scan/prefix control network is present which can be
used for fast barrier synchronization. Our programs for the CM-5 are
written in Split-C [Krishnamurthy et al. 1993]; a parallel extension of the
C programming language that follows an SPMD programming model and
provides a shared global address space.

Figure 7 plots the times needed for routing full h-relations (using the
Split-C store operation) on the CM-5, and it verifies that the routing time is
well approximated by a straight line with slope g ' 9.1 msec. and offset
L ' 45 msec. E-BSP’s additional parameter is given by g9 5 6.3 msec.
Thus, h-item scatter operations are slightly cheaper (about 30%) than full
h-relations, but this should again be attributed to send and receive over-
heads.

The BPRAM parameters belonging to the CM-5 are given by s ' 0.275
msec. and , ' 75 msec. (see Figure 8). On this platform, a single message

send takes up to a factor of 2.4 less time than a full block permutation.

3.5 MasPar MP-1

The MasPar MP-1 [Blank 1990; Nickolls 1990] is a massively parallel
SIMD architecture. The system used for the experimentation consists of
1024 Processor Elements (PEs), each of which is a four-bit, 80 nsec.
load/store arithmetic processor with 64KB of memory. A MasPar has two
communication networks: the Xnet and the global router. The Xnet is a
two-dimensional toroid, in which each PE is connected directly to eight
neighbors. With Xnet communication, all PEs must be communicating in
the same direction and at the same distance. The global router is a
multistage interconnection network with a predefined greedy routing
scheme. We have worked exclusively with router communication, because it
is faster than the Xnet for irregular communication patterns [Shumaker
and Goudreau 1997]. The programs for the MasPar were written in the
MasPar Programming Language (MPL): a data-parallel extension of C.

BSP does not seem to be a good model for the MasPar architecture. Most
importantly, the BSP model assumes that messages can be pipelined, but
the PEs of the MasPar can have at most one outstanding message. The BSP
model and the MasPar architecture are not completely incompatible, how-
ever. For example, it is possible to buffer the messages and to invoke a
routing algorithm at the end of a superstep, as was done in Shumaker and
Goudreau [1997]. However, this requires substantial memory space, which
is a severe limitation given that every PE has only 64KB of memory. We
therefore define the MP-BSP model: a small variation of BSP that reflects
this architecture more accurately.

The MP-BSP model is a synchronous model in which the processors
communicate by writing into the local memory of some other processor.
Each step is either a computation step or a communication step:

284 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



(1) In a computation step, each processor Pi performs the same operation
on data present in its local memory.

(2) In a communication step, each processor Pi writes one data item into
the local memory of some other processor.

Let hi be the number of processors accessing the local memory of processor
Pi during a communication step. The cost of this step will be modeled by
the formula L 1 g z max

i
hi. Thus, every communication step corresponds

to a ~1, h!-relation, in which each processor sends at most one message and
receives at most h messages.

In order to determine the MP-BSP parameters belonging to the MasPar,
the following experiment was conducted. A set of P/h destinations is
picked at random. Thereupon, we measured the time taken by a communi-
cation step in which P/h PEs receive h messages, while the remaining
destination (if any) receives P 2 h z P/h , h messages. The results of
this experiment are shown in Figure 9.

Ideally, the data points would form a straight line with slope g and offset
L, but the observed behavior is not completely linear. Thus, by charging
g z h 1 L time for routing ~1, h!-relations, an error will be introduced.
The large variation in the measurements is due to the limitation that there
is only one router channel available for each cluster of 16 PEs. If more than
one PE in a cluster needs to receive a message, then the messages are
serialized. This is clearly shown in Figure 10, which depicts the distribu-
tion of the times needed for routing ~1,128!-relations over 1000 experi-
ments. Thus, in this experiment there are P/h 5 8 PEs, each receiving
h 5 128 messages. Let u denote the maximum number of destinations
that fall in the same cluster. When u 5 1 (the destinations are spread
evenly among the clusters), a ~1,128!-relation takes between 4.8 and 6.2

Fig. 9. Time required for routing ~1, h!-relations on the MasPar.

A Quantitative Comparison of Parallel Computation Models • 285

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



msec. This occurred in the majority (about 66%) of the experiments
conducted. In 33% of the experiments, it took 8.6–9.2 msec. to perform a
~1,128!-relation, and in all these cases u was equal to 2. In less than 1% of
the experiments, the maximum number of destinations that fell in the
same cluster was u 5 3, and in all these cases the running time was
approximately 13.1 msec.

Figure 11 plots the time required for routing full block permutations on
the MasPar as well as the time needed for a single message send. From the
measurements we determined that the BPRAM parameters belonging to
the MasPar are given by s ' 107 msec. and , ' 6.3 3 102 msec. Further-
more, asymptotically a single message send is a factor of about 37.3
cheaper than a full block permutation. The MP-BSP and BPRAM parame-
ters belonging to the MasPar are summarized in Table I.

Fig. 11. Time required for performing full block permutations and for sending one message on
the MasPar.

Fig. 10. Distribution of the measured running times for h 5 128.

286 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



We also used a small variation of E-BSP for the MasPar, which will be
denoted by MP-E-BSP. In this model, the time needed for routing partial
permutations will be modeled as a function T unb ~p9! of the number of PEs
p9 which are active during the communication step. An approximation for
this function was determined by conducting the following experiment. A set
of p9 sending processors Ps1, Ps2, . . . , Psp9

is picked at random, as well as a
set of p9 receiving processors Pr1, Pr2, . . . , Prp9

. We then measured the time
required for performing a communication step in which processor Psi sends
a message to processor Pri~1 # i # p9!. The results of these experiments
are shown in Figure 12, where a logarithmic scale is used for the x-axis. It
can be seen that the communication time depends heavily on the number of
active PEs. For example, with 32 active PEs, a partial permutation takes
only about 13% of the time required for routing full permutations. By
performing a second order polynomial fit, we found that

T unb ~p9! 5 0.84 z p9 1 11.8 z Îp9 1 73.3 msec. (1)

yields a good approximation. This approximation is also shown in Figure
12.

4. ALGORITHM DESCRIPTIONS

In order to investigate the predictive capabilities of the models, the
following problems were selected: matrix multiplication, sorting, and all
pairs shortest path. We picked these problems for various reasons. First,
they are a key component of many important parallel processing applica-
tions. For example, matrix multiplication is present in almost all dense
linear algebra computations, and sorting is used in a variety of applications
such as query processing and polygon rendering. Furthermore, the prob-

Fig. 12. Time needed for routing partial permutations as a function of the number of active
PEs.

A Quantitative Comparison of Parallel Computation Models • 287

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



lems are relatively easy and well understood, so that a precise analysis
under the various models is feasible.

In this section, the implemented algorithms are described and analyzed.
Only the communication cost is determined precisely, because this is the
only cost captured in detail by the parallel computation models considered.
The local computation time is always determined empirically. The BSP and
the MP-BSP cost of an algorithm will be written as W 1 g z H 1 L z S,
where W is the (measured) local computation time, H 5 O

i51
S hi , hi is the

maximum number of messages sent or received by any processor during
superstep i, and S is the number of supersteps. Likewise, the BPRAM
complexity of an algorithm will be written as W 1 s z w z M 1 , z R,
where M 5 O

i51
R mi, mi is the maximum length of a message sent or

received by any processor during the ith communication step, and R is the
number of communication steps. The analysis under the E-BSP model is
somewhat more complex and will be dealt with differently.

4.1 Matrix Multiplication

We implemented the following matrix multiplication algorithm, which
follows a strategy similar to the one described in Aggarwal et al. [1990],
and Hong and Kung [1981] and which was adapted also for the BSP model
in McColl [1995]. Lower-bound proofs [Aggarwal et al. 1990; Hong and
Kung 1981] show that this algorithm is optimal under the BSP model (for
any algorithm that only uses the semiring operations ~1 , 3!). The algo-
rithm uses p 5 q3 processors. It is convenient to think of the processors as
being arranged in a q 3 q 3 q cube, i.e., let the processors be designated
by Pi, j, k for 0 # i, j, k , q. The input matrices A and B as well as the
output matrix C are partitioned into q2 square submatrices Aij, Bij, and
Cij~0 # i, j , q! of size n/q 3 n/q each. It will be assumed that, initially,
processor Pi, j, 0 holds the first n/q2 rows of Aij and Bij, processor Pi, j, 1

contains the second n/q2 rows of Aij and Bij, and so on.
The BSP algorithm consists of four supersteps. In the first superstep,

each processor Pi, j, k receives the elements belonging to Aij and Bjk. The
BSP cost of this superstep is 2 z g z n2/q2 1 L. In the second superstep,
every processor Pi, j, k computes Cijk 5 Aij z Bjk. This takes O~n3/p! local
computation time. Each processor is responsible for computing an n/q2 3
n/q submatrix of the output matrix C. In the third superstep, each
processor Pi, j, k sends every element of Cijk to the processor responsible for
computing the corresponding element in C. The communication cost of this
superstep is given by g z n2/q2 1 L. Finally, every processor adds q subma-
trices of size n/q2 3 n/q, which takes O~n2/q2! local computation time. The
total BSP cost of this algorithm is given in Table II. An extra synchroniza-
tion step may be required after the second superstep if communication is
unbuffered. In this case, the synchronization cost is given by 3 z L.

288 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



Under the MP-BSP model, care must be taken to avoid concurrent
writes to the same memory module. To achieve this, the communi-
cation is staggered so that processor Pi, j, k first sends data to processor
Pi, j, ~k11! mod q, then to Pi, j, ~k12! mod q, and so on. Table II shows the total
MP-BSP cost of matrix multiplication.

The algorithm can be easily restructured to use blocks of size n2/p for
data transfer. Note that the ability to use blocks of this size depends on the
initial distribution of the matrices. If the initial distribution is different, an
extra communication phase bringing the data in the desired layout is
required. In the BSP model this is not an issue; the precise initial
distribution is irrelevant as long as the data are distributed evenly among
the processors. The total BPRAM cost of matrix multiplication is also given
in Table II.

4.1.1 Optimizing Local Computation. Local computations remain un-
specified in the models. It is important, however, to optimize the local
matrix multiply carefully in order to obtain competitive results. On the
MasPar and the GCel, an optimized blocked innerproduct algorithm is used
that keeps parts of the output matrix C in registers. On the CM-5, the local
matrix multiply is designed to pay careful attention to the local cache size
and has a kernel written in assembly.1 On the Paragon and the T3E, we
used the BLAS 3 subroutine sgemm() .

4.2 Bitonic Sort

The sorting problem is defined as follows. Given n keys, initially distrib-
uted evenly among the processors, rearrange them so that every key in
processor Pi is less than or equal to every key in processor Pi11, for 0 # i
, p 2 1. In addition, the list of keys within each processor needs to be
sorted. We implemented two parallel sorting algorithms. One is based on
Batcher’s bitonic sort [Batcher 1968]. The other is a variation of sample
sort as described, for example, in Blelloch et al. [1991] and Gerbessiotis and
Valiant [1992]. Several papers on implementations of parallel sorting
algorithms have reported that bitonic sort is the fastest algorithm when the
number of keys per processor is small, whereas sample sort is the most
efficient algorithm when the number of keys per processor is large.

Briefly, the implemented variation of bitonic sort works as follows. First,
each processor sorts the set of n/p keys it contains locally. After that, the

1The local matrix multiply is written by Culler et al.

Table II. (MP-)BSP and BPRAM Cost of Matrix Multiplication

BSP BPRAM MP-BSP

W 5 Q~n3/p! W 5 Q~n3/p! W 5 Q~n3/p!
H 5 3 z n2/p2/3 M 5 3 z n2/p2/3 H 5 3 z n2/p2/3

S 5 2 or 3 R 5 3 z p1/3 S 5 3 z n2/p2/3

A Quantitative Comparison of Parallel Computation Models • 289

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



algorithm executes log p merge stages, where stage s~1 # s # log p! con-
sists of s merge steps. In step j~0 # j , s! of stage s, each processor Pi

sends the list of n/p keys in its possession to the processor whose ID is
obtained by complementing the jth bit of i. Thereafter, every processor
executes a linear-time sequential merging procedure and keeps either the
lower half of the merged list or the upper half. Bitonic sort can directly be
adapted to utilize block transfers. The BSP, BPRAM, and MP-BSP com-
plexities of bitonic sort are summarized in Table III.

There are many variations of bitonic sort. For n $ p2, a variation that
requires only two all-to-all communication patterns in every merge stage is
given in Culler et al. [1994]. We did not implement that variation because
the constraint on the input size is problematic for the MasPar.

4.2.1 Local Sort. To sort the keys locally, we used an eight-bit radix
sort. Let b denote the number of bits in a key (32-bit integers were used),
and let 2r be the radix of the sort. Radix sort requires time T local-sort ~m!
5 Q~~b/r! z ~2r 1 m!!. Radix sort was implemented because it is faster
than comparison-based sorting algorithms such as quicksort and heapsort.

4.3 Sample Sort

The implemented variation of sample sort proceeds in three phases. In
Phase 1, p 2 1 keys (splitters) are selected that partition the input into p
subsets (buckets) of roughly equal size. In Phase 2, each key is routed to its
appropriate bucket, where the ith bucket is stored in processor Pi. Finally,
in Phase 3, the keys are sorted locally within each bucket.

The splitters are chosen as follows. First, every processor randomly picks
a set of s sample keys from the keys in its possession, where s is called
the oversampling ratio. This takes O~s! local computation time. After that,
the samples are concentrated in processor P0. The BSP cost of this step
is g z ~p 2 1! z s 1 L. At this point, processor P0 sorts the samples
and chooses the samples with ranks s, 2 z s, . . . , ~p 2 1! z s as
the p 2 1 splitters. This step requires O~T local-sort ~s z p!! local work.
Finally, the splitters are broadcast from processor P0 to all other processors

Table III. (MP-)BSP and BPRAM Cost of Bitonic Sort

BSP W 5 Q~T local-sort ~n/p! 1 0.5 z log p z ~log p 1 1! z n/p!
H 5 0.5 z log p z ~log p 1 1! z n/p
S 5 0.5 z log p z ~log p 1 1!

BPRAM W 5 Q~T local-sort ~n/p! 1 0.5 z log p z ~log p 1 1! z n/p!
M 5 0.5 z log p z ~log p 1 1! z n/p
R 5 0.5 z log p z ~log p 1 1!

MP-BSP W 5 Q~T local-sort ~n/p! 1 0.5 z log p z ~log p 1 1! z n/p!
H 5 0.5 z log p z ~log p 1 1! z n/p
S 5 0.5 z log p z ~log p 1 1! z n/p

290 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



in two supersteps. In the first superstep, processor P0 distributes
the splitters so that every processor except Pp21 gets exactly one of them.
In the second superstep, each processor sends the splitter it contains to
all other processors. The BSP complexity of this step can be seen to be
g z ~2 z p 2 3! 1 2 z L.

In Phase 2, every key is labeled with its appropriate bucket and routed to
its destination processor. This is done as follows. First, every processor
sorts its local list of input keys. This takes O~T local-sort ~n/p!! local compu-
tation time. Since the keys and splitters are now sorted, the bucket to
which each key belongs can be determined in O~n/p 1 s! time. (In other
variations of sample sort [Blelloch et al. 1991; Gerbessiotis and Valiant
1992], the buckets are determined by performing a binary search over the
array of splitters. We found that the described scheme is more efficient.) In
the last step of Phase 2, each key is routed to its appropriate bucket. The
BSP cost of this step is given by g z bmax 1 L, where bmax is the maximum
number of keys in any bucket. The value of bmax was determined empiri-
cally.

In the third and final phase, the buckets are sorted locally. This takes
local computation time O~T local-sort ~bmax!!. The total BSP complexity of
sample sort is shown in Table IV.

4.3.1 BRRAM Variation. Unlike matrix multiplication and bitonic sort,
sample sort cannot directly be adapted to utilize block transfers. The
following substeps need to be implemented differently: (1) concentrating
the samples in processor P0, (2) broadcasting the splitters from processor
P0 to all other processors, and (3) routing the keys to their buckets.

Table IV. BSP, MP-BSP, and BPRAM Cost of the Described Variations of Sample Sort

BSP W 5 Q~T local-sort ~s z p! 1 T local-sort ~n/p! 1 T local-sort ~bmax!!
H 5 ~p 2 1! z s 1 2 z p 2 3 1 bmax

S 5 4

BPRAM SSDR W 5 Q~T local-sort ~s z p! 1 T local-sort ~n/p! 1 T local-sort ~bmax!!
M 5 ~p 2 1! z ~s 1 log p 1 mavg !, where mavg $ n/p
R 5 2 z ~p 2 1 1 log p!

BPRAM SSBR W 5 Q~T local-sort ~s z p! 1 T local-sort ~n/p! 1 T local-sort ~bmax!!
M 5 ~p 2 1! z ~s 1 log p! 1 log p z mavg , where mavg $ n/2
R 5 4 z log p

MP-BSP W 5 Q~T local-sort~b max
2 ! 1 s z log2 p 1 b max

1 z log p!

H 5 O
i51
n/p hi

1 1 O
i51
bmax

1

hi
2 1 s z log p z ~log p 1 1! 1 2 z Îp 2 2 1 0.5 z log p

S 5 n/p 1 b max
1 1 s z log p z ~log p 1 1! 1 2 z Îp 2 2 1 0.5 z log p

BPRAM MasPar W 5 Q~T local-sort ~bmax
1 ! 1 T local-sort ~bmax

2 ! 1 s z log2 p!

M 5 ~ Îp 2 1! z mavg
1 1 ~ Îp 2 1! z mavg

2 1 s z log p z ~log p 1 1!

1 2 z Îp 2 2 1 0.5 z log p
R 5 4 z Îp 2 4 1 log p z ~log p 1 1! 1 1.5 z log p

A Quantitative Comparison of Parallel Computation Models • 291

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



The first substep is implemented in a binary tree fashion. The BPRAM
cost of this is given by s z w z s z ~p 2 1! 1 , z log p. For the second
substep there are several options. We can either use a scatter-broadcast
approach as in the BSP algorithm, or we can simply broadcast the splitters
using a binary-tree-like algorithm. The first approach takes 2 z ~s z w z

~p 2 1! 1 , z log p! time under the BPRAM cost model, whereas the
second approach takes log p z ~s z w z ~p 2 1! 1 ,! time. We found that
because of its smaller startup cost, the second algorithm is to be preferred.

The most interesting part is the third substep in which each key is routed
to its appropriate bucket. Again, there are several possibilities to imple-
ment this step. The simplest way is to send all keys destined for the same
processor in a single large message. However, since every BPRAM proces-
sor may send/receive at most one message in a communication step, the
communication must be staggered so that during communication step
j~1 # j # p 2 1! processor Pi sends the keys destined for processor
P ~i1j! mod p. Let mi denote the maximum number of keys sent by any
processor in communication step i, and let mavg 5 O

i51
p21mi/~p 2 1!. The

value of mavg was determined empirically. The BPRAM cost of the routing
substep is given by ~p 2 1! z ~s z w z mavg 1 2 z ,!. Note that every com-
munication step incurs two startups, because the sender needs to inform
the recipient each time of the length of the incoming message. We call this
variation of the BPRAM sort “sample sort with direct routing” (SSDR). Its
total BPRAM complexity is given in Table IV.

The main problem with algorithm SSDR is that the routing substep
incurs a large number of startups. It can be reduced by employing a
butterfly-like algorithm. Then, the BPRAM cost of the routing substep is
given by log p z ~s z w z mavg 1 2 z ,!, where mavg 5 O

i51
log pmi/log p and

where mi is the maximum length of any message sent during communica-
tion step i~1 # i # log p!. This variation is called “sample sort with
butterfly routing” (SSBR). Its total BPRAM cost is also summarized in
Table IV. It is important to note that this variation increases the commu-
nication volume as well as the number of global synchronizations. It
therefore goes against the incentives provided by the BSP model.

Both SSDR and SSBR can be problematic if the keys are not uniformly
distributed, because the time needed for a communication step depends on
the length of the longest message transferred. In this article, this issue is
ignored because a random input is assumed.

4.3.2 MasPar Variations. On the MasPar, because of the small per-
processor memory size, a different variation of sample sort was imple-
mented. The MP-BSP version proceeds in three phases.

In the first step of the first phase, every processor picks s sample keys
from its local set of keys. After that, the samples are sorted using bitonic
sort. Thereupon, every processor Pi, where i [ 0~mod Îp! and i Þ 0,
sends the smallest sample key in its possession to all other processors.

292 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



These Îp 2 1 splitters divide the processors into Îp groups consisting of
Îp processors each. Now, every processor labels each key in its possession
with the group it should be routed to. This is done by performing a binary
search over the array of splitters. In the last step of the first phase, each
key is sent to a processor in the appropriate group. The cost of this step will
be modeled by the formula O

i51
n/p ~g z hi

1 1 L!, where hi
1 is the maximum

number of keys received by any processor during the ith communication
step. The values of the hi

1’s were determined empirically.
The second phase proceeds similarly. After that, each key is located in its

appropriate destination processor. The cost of the routing step in the
second phase is given by O

i51
bmax

1

~g z hi
2 1 L!, where b max

1 $ n/p is the maxi-
mum number of keys in any processor after Phase 1. Finally, a local sort is
performed which takes T local-sort ~bmax

2 ! time, where bmax
2 is the maximum

number of keys in any processor after Phase 2.
The BPRAM variation proceeds almost identically, except that the keys

are sorted locally prior to each routing step, so that the keys destined for
the same processor can be sent at once. Refer to Table IV for the total
MP-BSP and BPRAM complexities of the described variations of sample
sort.

4.4 All Pairs Shortest Path

An important graph-theoretic problem is all pairs shortest path (APSP),
which is defined as follows. Given a directed graph G 5 ~V, E!, where V
5 $v0, v1, . . . , vn21% is a set of n vertices and E # V 3 V is a set of
edges. With each edge ~vi, vj!, a length lij is associated. The task is to
compute, for each pair of vertices vi and vj, the length of the shortest path
from vi to vj. There are several algorithms for solving this problem. We
implemented parallel variations of Floyd’s algorithm [Aho et al. 1983],
which is widely recognized as the fastest algorithm if the input graph is
dense.

Floyd’s algorithm can briefly be described as follows. An n 3 n matrix
D 5 ~dij!0#i, j,n is used to store the currently shortest path between any
pair of nodes vi and vj. Initially, dii 5 0, dij 5 lij if there is an edge with
length lij between vi and vj, and dij 5 ` otherwise. The algorithm then
executes n iterations, and in iteration k~0 # k , n! every element dij is
set to min$dij, dik 1 dkj%.

There are several ways to parallelize this algorithm. Let the processors
be designated by Pi, j for 0 # i, j , Îp. In the simplest variation, which
will be denoted by APSP 1, the matrix D is partitioned into p square
submatrices Dij~0 # i, j , Îp! of size n/ Îp 3 n/ Îp each, and processor
Pi, j is assigned the task of updating Dij in each iteration k. Then, in every
iteration k, each processor Pi, j that contains a segment of D@*, k# needs to
send it to the processors Pi, *, and each processor Pi, j that contains a

A Quantitative Comparison of Parallel Computation Models • 293

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



segment of D@k, *# needs to send it to the processors P*, j. Both steps
correspond to an ~n/ Îp!-item broadcast operation for which an optimal
BSP algorithm was presented in Juurlink and Wijshoff [1996b]. When
n $ p, the communication cost incurred in every iteration is given by
4 z g z n/ Îp 1 2 z L under the BSP cost model. In the BPRAM version, the
broadcasts are implemented in a binary tree fashion, resulting in commu-
nication cost log p z ~s z w z n/ Îp 1 ,! in every iteration. On the MasPar
under the MP-BSP model, it may happen that n , p. In this case, an extra
phase in which each element is broadcast to p/n processors is required.
This is implemented in a binary tree fashion, resulting in communication
cost ~g 1 L! z ~4 z n/ Îp 1 2 z max$0, log ~p/n!%! in every iteration.

If L and/or , are large, it may be advantageous to use a different parallel
variation of Floyd’s algorithm derived from the external-memory algorithm
given in Ullman and Yannakakis [1991]. This variation will be denoted by
APSP 2. Briefly, the algorithm consists of Îp iteration, and in iteration
k~0 # k , Îp! the transitive closure of the diagonal submatrix Dkk is
computed and broadcast to all processors. In addition, processor Pi, j

receives the submatrices Dik and Dkj. For the broadcasts, we again used the
scatter-broadcast approach of Juurlink and Wijshoff [1996b] in the BSP
version, and the binary-tree-like algorithm in the BPRAM version. The
BSP version requires 6 z ~g z n2/p 1 L! communication time in every
iteration, and the BPRAM version needs 2 z log p z ~s z w z n2/p 1 ,! com-
munication time per iteration. It needs to be mentioned that although
APSP 1 and APSP 2 require the same amount of local computation time
asymptotically (O~n3/p!), the constant hidden in the big-Oh notation is
larger in APSP 2. The total running times of all variations are shown in
Table V.

4.4.1 E-BSP Analysis. So far, we have ignored unbalanced communica-
tion. The communication patterns that arise in matrix multiplication and
bitonic sort are perfectly balanced, and so the E-BSP complexities of these
algorithms are equal to their BSP complexities. In sample sort, unbalanced

Table V. (MP-)BSP and BPRAM Cost of All Pairs Shortest Path

BSP BPRAM

APSP 1 APSP 2 APSP 1 APSP 2

W 5 Q~n3/p! W 5 Q~n3/p! W 5 Q~n3/p! W 5 Q~n3/p!

H 5 4 z n2/ Îp H 5 6 z n2/ Îp M 5 log p z n2/ Îp M 5 2 z log p z n2/ Îp
S 5 2 z n S 5 6 z Îp R 5 n z log p R 5 2 z Îp z log p

MP-BSP W 5 Q~n3/p!

H 5 4 z n2/ Îp 1 2 z n z max$0, log ~p/n!%

S 5 4 z n2/ Îp 1 2 z n z max$0, log ~p/n!%

294 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



communication occurs at three points: (1) when the samples are concen-
trated in processor P0 (which corresponds to an
~s z ~p 2 1!, s z ~p 2 1!!-relation), (2) when the splitters are distributed
across the processors (~p 2 2, p 2 2!-relation), and (3) when each key is
routed to its appropriate bucket (~n, bmax!-relation). However, because the
communication overhead incurred in sample sort is dominated by the send
phase for all but very small input sizes and because bmax is expected to be
close to n/p, unbalanced communication should have almost no effect on
the accuracy of the BSP model in sample sort. In this section, the E-BSP
cost of the APSP algorithm is determined.

The E-BSP cost of APSP 1 is determined as follows. In the first superstep
in the broadcast procedure a total of 2 z n messages are being routed, and
the processor assigned to the diagonal block sends the maximum number of
messages, namely 2 z n/ Îp. The second superstep corresponds to a full
h-relation with h 5 2 z n/ Îp. The communication cost incurred in every
iteration is therefore max$2 z g z n/p, 2 z g9 z n/ Îp% 1 2 z g z n/ Îp 1
2 z L. Similarly, the communication cost incurred in every iteration of
APSP 2 can be seen to be 2 z max$g z n2/p1.5, g9 z n2/p% 1 max$g z n2/p2,
g9 z n2/p% 1 3 z g z n2/p 1 6 z L.

The MP-E-BSP cost of APSP 1 is determined as follows. If n $ p, then
the first phase of the broadcast procedure consists of n/ Îp communication
steps, and in each step only Îp processors are active. The MP-E-BSP cost
of this phase is therefore given by ~n/ Îp! z Tunb~ Îp!. In the second phase,
all processors are active, so that the communication cost is ~n/ Îp! z

Tunb~p!. The total communication overhead is therefore

2 z n z S n

Îp
z Tunb~Îp! 1

n

Îp
z Tunb~p!D. (2)

If n , p, the extra phase consists of log~p/n! communication steps, and in
communication step i ~0 # i , log ~p/n!!, 2 i z n PEs are active. In this
case, the total communication cost is

2 z n z S n

Îp
z Tunb~Îp! 1

n

Îp
z Tunb~p! 1 O

i50

log ~p/n!21

Tunb~2i z n!D. (3)

5. COMPARING MEASURED AND PREDICTED PERFORMANCE

In this section, we investigate the predictive capabilities of the models by
comparing the measured execution times for the set of synthetic bench-
marks described in the previous section with the running times predicted
by the models.

A Quantitative Comparison of Parallel Computation Models • 295

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



5.1 BSP

Figure 13 shows the measured and predicted performance of the BSP (short
message) version of matrix multiplication on the CM-5. It can be seen that
the BSP model does not accurately predict the actual performance. For
example, for a matrix size of 128 3 128, the performance predicted by the
BSP model is 113.0 Mflops, but the measured performance is 89.9 Mflops.
The relative error is about 26%, which is too large to ignore given the
regularity of the computation. The defect is caused by the fact that each
processor Pi, j, k first sends data to processor Pi, j, 0, then to Pi, j, 1, and so on.
This causes stalls at the processor-network interface. We call the phenom-
enon endpoint-contention. In this case, it can be easily avoided by stagger-
ing the communication so that processor Pi, j, k first sends data to processor
Pi, j, ~k11! mod q, then to Pi, j, ~k12! mod q, and so on, just as was done explicitly in
the MP-BSP and BPRAM variations. The curve labeled “staggered” in

Fig. 14. Measured and predicted performance of the BSP matrix multiply on the T3E.

Fig. 13. Measured and predicted performance of the BSP matrix multiply on the CM-5.

296 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



Figure 13 shows the performance measured for this implementation. It can
be seen that it indeed closely matches the performance predicted by the
BSP model.

The implementation of BSPlib on the T3E defers all communication until
the end of the superstep and sends messages in an order specified by a
randomly generated Latin square, where row i is used as the schedule for
processor Pi [Skillicorn et al. 1997]. Indeed, on this platform endpoint-
contention does not occur (cf. Figure 14). The implementations of the BSP
library on the GCel and the Paragon send messages in a staggered order.
We found that for the set of algorithms we experimented with, both
techniques were sufficient to ignore endpoint-contention. However, a major
drawback of this approach is that it requires substantial memory space for
buffering.

Figure 15 shows the measured and predicted times per key for the BSP

Fig. 15. Measured and predicted times per key for the BSP bitonic sort on the Paragon.

Fig. 16. Measured and predicted times per key for the MP-BSP bitonic sort on the MasPar.

A Quantitative Comparison of Parallel Computation Models • 297

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



version of bitonic sort on the Paragon. The total running time is obtained
by multiplying the time per key by the number of keys per processor (n/p).
It can be seen that there are significant errors in the predictions, especially
for small input sizes. For example, when n/p 5 1024, the BSP model
predicts that bitonic sort requires about 513 msec. per key, but the
measured time per key is only one-third of that, about 167 msec. The error
is caused by the fact that the communication patterns that arise in bitonic
sort correspond to permutation-routing patterns (one-to-one routing),
whereas the BSP cost model conservatively assumes that every communi-
cation superstep involves the routing of an h-relation (all-to-all routing).
The implementation of the BSP library routes an arbitrary communication
pattern using d 1 s 1 log p startups, where d (respectively s) is the
maximum number of messages sent (respectively, received) by any proces-
sor. The extra log p startups are used for exchanging information about
buffer sizes, number of packets in the buffer, etc. In bitonic sort d 5 s 5

1, but in an arbitrary h-relation d 5 s 5 p 2 1. So, when the startup
times dominate (i.e., when n/p is small), this causes the BSP model to
overestimate the actual execution times.

Fig. 17. Predicted times per key for the BSP version of sample sort on the GCel.

298 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



There are also large errors in the MP-BSP predictions for bitonic sort on
the MasPar. Figure 16 shows that the MP-BSP model continually overesti-
mates the measured times per key by almost a factor of 2.0. The reason for
this is that bitonic sort makes use of a communication pattern that is
rather cheap on the MasPar global router. Experiments showed that
permutations in which every processor Pi communicates with a processor
whose ID is obtained by complementing a bit in i require approximately
590 msec., which is less than 46% of the time needed for routing an average
random permutation. Other frequently occurring communication patterns,
such as regular shifts in which each processor Pi sends a message to
processor P ~i1k! mod p, also take up to a factor of 2.2 less time than normally
predicted. This effect could be nullified by randomly assigning processes to
processors, but this is not a good idea for two reasons. First, it requires a
large table in every PE’s memory. Second, it would increase the communi-
cation time, and we do not believe that trading efficiency for accuracy is a
good trade-off.

Figures 17 and 18 break down the predicted and measured running times
of the BSP sample sort on the GCel into the time taken by each of the three
phases. It can be seen that the BSP model overestimates the time taken by
Phase 1 by almost a factor of two. For example, with 128 keys per

Fig. 18. Measured times per key for the BSP version of sample sort on the GCel.

A Quantitative Comparison of Parallel Computation Models • 299

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



processor, the BSP model predicts that Phase 1 requires about 9.5 msec.
per key, but the measured time per key is approximately 5.6 msec. The
errors should be attributed to unbalanced communication, since when the
samples are concentrated in processor P0, only one processor receives h 5
s z ~p 2 1! messages while all other processors send only s messages and
receive none. The time taken by the routing phase is also not exactly
predicted. For example, with 32K keys per processors, it needs 88 msec. per
key instead of the predicted 117 msec. This error is also due to unbalanced
communication, since not all processors send or receive as many as bmax

keys.

5.2 BPRAM

Figure 19 depicts the measured and predicted performance of the BPRAM
matrix multiplication program on the GCel. It appears that there are only
minor errors in the predictions. However, when we measured the time
taken by each of the three communication phases separately ((1) the
broadcast of the A blocks, (2) the broadcast of the B blocks, and (3) the
routing of the partial products), we found considerable differences between
them. For example, when n 5 256, Phase 1 took 76.5 msec., Phase 2 took
265.1 msec., and Phase 3 took 134.4 msec. The expected time for each
phase is 205.6 msec. This can be explained by looking at the way the
“logical” processors are mapped to physical processors. We simply assigned
processor Pi, j, k to the processor with PARIX ID i z p2/3 1 j z p1/3 1 k.
Given that the processors are indexed row major under PARIX, the proces-
sors that communicate with each other in the first communication phase
are close to each other. Furthermore, this mapping causes contention
during the second communication phase, which explains why it needs more
time than the other communication phases. The inaccuracy can be over-
come by randomly assigning jobs to processors. Figure 19 also shows the
performance attained by an implementation that employs a random map-
ping (the curve labeled “measured randomized”), and it can be verified that
there is a close match with the predicted performance. A similar effect
occurred on the Paragon. From now on, all results given for the GCel and
the Paragon employ a random mapping of jobs to processors. The imple-
mentation of BSPlib on the T3E also uses a random mapping.

Figure 20 compares the estimated and measured times per key for the
BPRAM version of bitonic sort on the MasPar. As was the case for the
MP-BSP version of this algorithm, there are significant errors in the
predictions; they are always off by a factor of approximately 1.5. Again, this
is caused by the fact that the communication pattern that arises in bitonic
sort is especially cheap on the MasPar global router. To incorporate this
feature, the model needs to provide multiple bandwidth parameters s that
depend on the communication pattern being routed. Obviously, this cannot
be done without sacrificing simplicity.

Figure 21 shows the measured and predicted communication times per
element for the BPRAM version of APSP 2 on the Paragon. Because in this

300 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



algorithm the communication overhead is only a small fraction of the total
execution time, and because we consider the BPRAM to model only commu-
nication cost, the local computation time is not included. It can be seen that
the BPRAM model does not accurately predict the actual communication
times per element. For example, when n 5 256, the measured and pre-
dicted times per element are about 106 msec. and 158 msec., respectively.
For n 5 1024, the measured and predicted times per element are given by
13.8 msec. and 26.2 msec., respectively, which corresponds to an error of
almost 90%. When n is small, the error is mainly caused by the fact that in
APSP 2 a processor never simultaneously acts as a sender and as a
recipient. This leads to a smaller startup cost than in a full block permuta-
tion, in which each processor sends and receives simultaneously. On the
other hand, when n is large, the errors are caused by unbalanced commu-
nication, because when the diagonal block is broadcast only a few proces-

Fig. 19. Measured and predicted performance of the BPRAM matrix multiply on the GCel.

Fig. 20. Measured and predicted times per key for the BPRAM bitonic sort on the MasPar.

A Quantitative Comparison of Parallel Computation Models • 301

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



sors are active during the top levels of the broadcast tree. However, the
errors should only be partially attributed to bisection bandwidth limita-
tions, because it appears that the links connecting the processors to the
network are only half-duplex. To illustrate this, Figure 21 also shows the
predictions of a single-port variation of the BPRAM that charges s z

max
i
$ms

i 1 mr
i % 1 , time for a communication step, where ms

i is the length

of the message sent by processor Pi and mr
i is the length of the message

received by processor Pi. These predictions are more accurate than the
predictions of the original BPRAM model, but still do not coincide with the
measured communication times.

Fig. 22. Measured and predicted communication times per element for the BPRAM version of
APSP 2 on the GCel.

Fig. 21. Measured and predicted communication times per element for the BPRAM version of
APSP 2 on the Paragon.

302 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



5.3 E-BSP

In this section, we take the APSP problem as a case study to investigate the
effect of unbalanced communication on the accuracy of the BSP model, and
we show that the E-BSP model can be used to explain the difference
between the measured and predicted execution times. Note that in APSP 1
as well as in APSP 2 unbalanced communication can cause errors of at
most a factor of 2 (assuming everything else is modeled precisely), since the
second communication superstep in every iteration corresponds to a full
h-relation. (This does not hold for the MP-BSP variation of APSP 1 when
n , p). Furthermore, on all platforms except the MasPar the computation
time quickly dominates the communication overhead. Because of this, and
because communication and synchronization costs are the only runtime

Fig. 23. Measured and predicted communication times per element for the MP-BSP version of
APSP 1 on the MasPar.

Fig. 24. Measured and predicted communication times per element for the BSP version of
APSP 2 on the GCel.

A Quantitative Comparison of Parallel Computation Models • 303

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



components modeled in detail by BSP, only the communication time in-
curred in the algorithm will be considered in this section.

Figure 23 shows the measured and predicted communication times for
the MP-BSP variation of APSP 1. In order to place the data on a common
scale, the total communication time is divided by the number of elements
per processor (n2/p). It can be seen that the estimated communication
times per element deviate significantly from the measured ones. The
largest error of 128% occurs at n 5 128. The times predicted by MP-E-BSP
(using Eq. (1)) are also depicted. These predictions portray the actual
runtime behavior much more precisely; all errors are less than 12%. A
similar effect occurred on the GCel (Figure 24). The BSP model continually
overestimates the measured communication times per element, with a

Fig. 25. Measured and predicted communication times per element for the BSP version of
APSP 2 on the Paragon.

Fig. 26. Measured and predicted communication times per element for the BSP version of
APSP 1 on the CM-5.

304 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



largest error of 58% at n 5 256. On the other hand, the predictions
produced by the E-BSP model almost coincide with the measured data
points.

Figures 25 and 26 show the measured and predicted communication
times per element for APSP 2 on the Paragon and APSP 1 on the CM-5,
respectively. Although BSP always overestimates the actual communica-
tion times, we emphasize that the errors are not due to congestion in the
network, but to the fact that a small overhead is payed for every inbound
and every outbound message. The BSP cost model could be easily modified
to account for this. Furthermore, on the Paragon the largest error occurs at
n 5 128. For this problem size, the error is mainly due to the fact that in
APSP 2 a processor never simultaneously acts as a sender and a receiver,
which leads to a smaller startup cost and hence a smaller value of L. Since
E-BSP also does not take this into account, its prediction is not much better
than the one produced by BSP. On the CM-5, we observe a different
phenomenon. Whereas BSP continually overestimates the measured com-
munication times per element, E-BSP always underestimates the actual
communication times.

5.4 Summary

Table VI shows the maximum errors measured for each algorithm-model-
platform combination, where the error is defined as follows. Let T meas be

Table VI. Summary of the Errors in the Predictions. Remarks: (1) For the APSP problem
only the error in the predictions for the communication time is given. (2) Sample sort was

not implemented on the CM-5, and APSP was not implemented on the T3E. (3) The error of
12% for the BPRAM matrix multiply on the GCel occurred when the nonrandomized version
of the BPRAM library was used. Shown in parentheses is the maximum error observed when
the version that randomly assigns jobs to processors was used. (4) The error of 26% for the

BSP matrix multiply on the CM-5 is the maximum error measured for the naive
(nonstaggered) version. Shown in parentheses is the maximum error observed for the

staggered version. (5) The error of 90% for the BPRAM version of APSP 2 on the Paragon is
the maximum error when the full-duplex BPRAM cost model was used. Shown in parenthe-
ses is the maximum error measured for the single-port variation of the BPRAM cost model.

Platform

Algorithm Model Paragon GCel T3E CM-5 MasPar

matrix BSP 41% 19% 16% 26% (3.0%) 11%
multiplication BPRAM 12% 12% (4.6%) 1.7% 6.8% 1.6%

bitonic BSP 207% 75% 33% 6.8% 98%
sort BPRAM 6.8% 7.5% 1.6% 11% 55%

sample BSP 16% 51% 21% N/A 79%
sort BPRAM 15% 13% 5.7% N/A 9.5%

all pairs BSP 39% 58% N/A 11% 128%
shortest E-BSP 34% 7.0% N/A 7.1% 12%

path BPRAM 90% (40%) 142% N/A 14% 202%

A Quantitative Comparison of Parallel Computation Models • 305

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



the measured execution time, and let T pred be the predicted execution time.
The error in the prediction is given by ?T meas 2 T pred?/min$T meas, T pred%.
We used this definition so that the error is—say—100% when the model
overestimates the actual execution time by a factor of 2, as well as when it
underestimates the actual execution time by a factor of 2.

It can be seen that in most cases the BPRAM is more accurate than the
BSP model. This is due to two reasons. First, and most importantly, the
communication overhead incurred in the BPRAM algorithm is always less
than the communication overhead incurred in the corresponding BSP
algorithm. Second, the BPRAM model is more restrictive than the BSP
model, since it requires that any communication pattern is broken down
into a sequence of block permutations. The BPRAM, therefore, implicitly
captures endpoint-contention. The BSP model is more flexible, but because
of that, its predictions are less accurate. E-BSP is also more accurate than
BSP in those cases that the communication is not perfectly balanced,
especially on low-bandwidth systems such as the MasPar and the GCel. We
also note that some of the errors in the BSP predictions on the Paragon and
the T3E should be attributed to the inability to separate the computation
from the communication cost. For example, sometimes address calculations
were necessary in the communication loop that were not performed in the
loop we used to perform h-relations. On the other platforms, communica-
tion is much more expensive than local computations, so that any overhead
for address calculations can be neglected.

Concluding, we find that the models did not accurately predict the actual
execution times in the following situations:

—Certain frequently occurring communication patterns require less time
than normally predicted. This happened in both variations of bitonic sort
on the MasPar and, to a lesser extent, in the BPRAM matrix multiply on
the GCel.

—BSP does not capture endpoint-contention. This affected the accuracy of
its predictions for matrix multiplication on the CM-5. The implementa-
tions of the BSP library on the GCel and the Paragon send the messages
in a staggered order, whereas BSPlib on the T3E uses a Latin square to
schedule the communication. For the algorithms we experimented with,
this technique was sufficient to ignore endpoint-contention.

—Especially on the Paragon there is a high startup cost associated with
every message transmission. Because of this, the BSP model significantly
overestimated the time needed for performing communication patterns in
which each processor does not send/receive messages to/from all other
processors. This happened in bitonic sort and, to a lesser extent, in
matrix multiplication and APSP. It also affected the accuracy of the
E-BSP model.

—Both the BSP and the BPRAM model ignore unbalanced communication.
This introduced significant errors in the communication times predicted

306 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



for the APSP algorithms, especially on low-bandwidth systems like the
MasPar and the GCel. On the CM-5 and the Paragon, the communication
time is dominated by send and receive overheads when small messages
are being routed. Unbalanced communication has therefore almost no
effect on the accuracy of the BSP model on these platforms. Furthermore,
a single-port variation of the BPRAM model produced much better
predictions for APSP 2 on the Paragon, provided that the startup cost
does not dominate.

6. COMPARISON OF THE MODELS

In this section, we compare the BSP and BPRAM models in order to
determine the model that induces the fastest algorithms. The E-BSP model
is not considered in this section, because the differences between the time
needed for routing full h-relations and partial ones was too small to give an
example of a problem for which the E-BSP model yields a faster algorithm
than BSP. An example of such a problem is given in Juurlink and Wijshoff
[1996a].

Figure 27 shows the speedup achieved by the BPRAM matrix multiplica-
tion algorithm over the BSP version of the matrix multiplication algorithm.
It can be seen that the BPRAM algorithm always outperforms the BSP
algorithm. On all platforms, except on the Paragon, the performance
improvement decreases as the matrix dimension n increases. This is
because the communication overhead becomes less significant as the ma-
trix dimension n increases, since the amount of local work grows as
Q~n3/p!, whereas the communication time behaves as Q~n2/p2/3!. Evi-
dently, if the matrix dimension is increased even further, the BSP matrix
multiply will eventually achieve performance comparable to the BPRAM
matrix multiply. This is unsatisfactory, however, because for matrix multi-
plication it is easy to find an algorithm in which the computation time
increases much more rapidly than the communication time. In other words,

Fig. 27. Speedup of the BPRAM matrix multiply over the BSP matrix multiply.

A Quantitative Comparison of Parallel Computation Models • 307

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



the BSP algorithm is not very scalable. On the Paragon the speedup
increases until n 5 512, and after that it decreases. On this platform, the
startup times dominate the communication overhead when n is small. The
advantage of grouping data into long messages therefore increases as the
amount of communication increases, until the local computation time starts
to dominate the overall running time.

The speedup of the BPRAM version of bitonic sort over the BSP variation
of the same algorithm is given in Figure 28. In this benchmark, the amount
of local work does not increase more rapidly than the communication
overhead as the problem size increases. On the T3E, GCel, CM-5, and
MasPar, the speedups stay approximately constant, at about 4.3, 3.2, 2.1,
and 2.1, respectively. The precise speedup depends very much on the ratio
of processor speed to communication bandwidth. On the GCel, for example,
the local sorting and merging steps contribute very little to the total
running time, which explains why on this platform the improvement is
about equal to the maximum improvement that one can expect: g/~w z s!
5 3.5. On the T3E, on the other hand, the amount of local work in the
BPRAM variation of bitonic sort is about 11 times larger than the commu-
nication time. Again, on the Paragon the speedup increases with increasing
problem size. This is again due to the fact that the startup times dominate
the communication overhead when n is small, whereas the data transfer
time dominates when n is large.

Figure 29 plots the speedups of the BPRAM version of sample sort over
the BSP variation of the same algorithm, where we have taken the fastest
BPRAM algorithm (SSDR or SSBR). On the Paragon, SSBR was more
efficient than SSDR for all measured data points due to its smaller number
of startups. On the GCel, SSBR was the fastest sample sort variation up to
n/p 5 8K, and after that SSDR was the fastest variation. On the T3E,
SSDR always outperformed SSBR.

Fig. 28. Speedup of BPRAM bitonic sort over BSP bitonic sort.

308 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



For this algorithm, the largest speedup was measured on the T3E.
However, the main reason for this is that the BSPlib message-passing
primitive bsp _send which was used for routing the keys to their buckets
performs rather poorly compared to the DRMA operation bsp _hpput (cf.
Figure 5). On this platform, it would have been better to use bsp _hpput ,
but this requires a different program that computes the position of each
key within its destination bucket. Of course, having to develop different
program variations depending on the performance of the communication
primitives cannot be called truly portable. On the Paragon, the BPRAM
version of sample sort indeed outperforms the BSP variation, but not as
clearly as in matrix multiplication and bitonic sort. This is because for
these relatively small input sizes the communication overhead is domi-
nated by the startup cost, and although SSBR reduces the number of
startups, it needs extra time for rearranging the data so that the keys
destined for the same processor are stored consecutively. Here we observe
that on the MasPar the speedup increases as the problem size increases.
This is due to the fact that the BPRAM algorithm is unable to send large
messages when the number of keys per processor is small.

Thus, in most cases, sending a few long messages yields a significant
improvement over sending many small ones, even if the BSP library packs
small messages together. However, on many platforms a satisfactory per-
formance can be obtained if fixed-size short messages are used, but they
should be larger than one computational word. In order to validate this
claim, we also programmed a BSP variation of sample sort in which 32-byte
messages are used during the send phase. On the Paragon, the T3E, and
the GCel, this required hardly any algorithmic changes, since the keys are
already sorted prior to the send phase. On the MasPar, it required an
intermediate local sorting step in both routing phases.

Figure 30 shows the speedup of BPRAM sample sort over the BSP
version of sample sort that uses 32-byte messages. Now, the speedup is

Fig. 29. Speedup of the BPRAM sample sort over the BSP sample sort.

A Quantitative Comparison of Parallel Computation Models • 309

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



never larger than 2. The speedup of about 1.85 on the T3E should again be
attributed to the fact that bsp _send is relatively expensive compared to
bsp _hpput . On the Paragon, the BSP version eventually incurs a perfor-
mance penalty of about 20% compared to the BPRAM algorithm, which can
be called acceptable. On the GCel, because the BSP algorithm performs
fewer synchronizations, it even outperforms the BPRAM algorithm for
n/p . 10K. On the MasPar, this variation of the BSP sample sort actually
performs worse than the previous one for n/p # 200, because the interme-
diate local sorting steps require extra time. In the end, using 32-byte
messages does save time overall.

7. EFFICIENCY VALIDATION

The ability to accurately predict the performance of parallel programs is a
crucial property that a parallel computation model must possess, since it
enables the programmer to pick the fastest algorithm from a set of possible
alternatives without having to implement them. However, to be useful in
practice, a model must also induce algorithms that are (nearly) as efficient
as implementations customized for the architecture. In this section, we
validate the efficiency of the model-derived algorithms by comparing them
with machine-specific solutions. When available, we used the software
present on each platform or software that is publically available. In some
cases, we have written our own programs based on algorithms available in
the literature.

7.1 Matrix Multiplication

In order to validate the efficiency of the model-derived matrix multiplica-
tion algorithms, we compared them with matrix multiplication routines
present in mathematical libraries, where available. On the MasPar we used
the matmul intrinsic. On the CM-5 we used the gen_matrix _mult routine

Fig. 30. Speedup of BPRAM sample sort over BSP sample sort with 32-byte messages.

310 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



present in the Connection Machine Scientific Software Library, and on the
Paragon we used the psgemmroutine from Parallel BLAS (PBLAS). On the
GCel and the T3E, no parallel mathematical library was available. On the
GCel, we therefore implemented Cannon’s algorithm (e.g., see Kumar et al.
[1994]), a systolic algorithm which is very well suited for mesh architec-
tures like the GCel. It is important to note that the communication cost in
the model-derived algorithms grows as Q~n2/p2/3!, whereas the communica-
tion cost in Cannon’s algorithm grows as Q~n2/p1/ 2!. The BSP as well as the
BPRAM therefore predict that Cannon’s algorithm is inferior. We are
unaware of a matrix multiplication algorithm tailored toward the T3E
architecture.

Figure 31 shows the speedup of the machine-specific matrix multiplica-
tion programs over the fastest model-derived algorithms. On all platforms,
this turned out to be the BPRAM matrix multiply. Since the communica-
tion overhead in matrix multiplication becomes less significant as the
matrix size n increases, one would expect the speedup to approach 1 for
large data size (provided that the local matrix multiplications perform
equally well). Below, we discuss the results for each platform in detail.

7.1.1 MasPar. On this platform, due to the small per-processor memory
size and due to the fact that the parallel algorithm requires Q~n2 z p1/3!
space, the largest matrix size that could be tested was n 5 700. It can be
seen that the BPRAM matrix multiply incurs a performance penalty
between 35% and 78% compared to the matmul intrinsic. Since we do not
know how matmul is implemented, we cannot be certain about the reason
for the performance penalty. However, it is reasonable to assume that it
uses the Xnet for communication, which has a bandwidth that is 16 times
higher than that of the global router. Also notice that on the MasPar the
performance penalty is largest for large matrix size. This should be
attributed to the fact that on this platform the computation-to-communica-

Fig. 31. Speedup of the machine-specific matrix multiplication programs over the fastest
model-derived matrix multiplication algorithms.

A Quantitative Comparison of Parallel Computation Models • 311

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



tion ratio is smallest, since it is the platform with the largest number of
processors.

7.1.2 GCel. On this platform, Cannon’s algorithm outperforms the
BPRAM algorithm for all measured matrix sizes, even though the BPRAM
predicts otherwise. The reason is, of course, that Cannon’s algorithm
exploits network proximity (it requires only near-neighbor communication),
whereas in the BPRAM model the network topology is hidden. Neverthe-
less, we believe that the performance penalty can be called acceptable,
since for all n $ 512, the BPRAM matrix multiply incurs a performance
penalty of at most 25% compared to Cannon’s algorithm. Obviously, the
ability to exploit network proximity will become more important on larger
scale platforms as the number of processors increases relative to the
problem size.

7.1.3 Paragon. The speedup curve for the Paragon is similar to that for
the GCel, but on this high-bandwidth platform, the communication over-
head very quickly becomes insignificant. For matrix sizes between n 5
512 and n 5 896, the BPRAM matrix multiply even slightly (by at most
7%) outperforms the PBLAS subroutine sgemm. Thus, the larger the band-
width, the easier it is to write portable algorithms that do not incur a large
performance penalty compared to machine-specific code.

7.1.4 CM-5. Surprisingly, on the CM-5, the BPRAM matrix multiply
turned out to be significantly faster than the vendor-supplied routine gen
_matrix _mult . It needs to be mentioned, however, that the implementa-
tions do not use the CM-5’s vector units, because they were not available
under Split-C. For example, if compiled for the vector-units model, gen
_matrix _mult achieves 1016 MFlops at n 5 512, whereas the peak per-
formance achieved by the scalar BPRAM program is 372 MFlops. Neverthe-
less, the BPRAM program compares fairly well with other matrix multipli-
cation codes on the CM-5. For example, out of the LogP work a matrix
multiplication program was developed [Krishnamurthy et al. 1993], which
achieves a maximum performance of 413 MFlops. Compared to this pro-
gram, the BPRAM algorithm incurs a performance penalty of about 10%.

7.2 Sorting

For matrix multiplication it is relatively easy to find an algorithm in which
the communication overhead grows at a much smaller rate than the
computation time. For integer sorting, however, the amount of computation
per processor as well as the communication grows proportionally to the
number of keys per processor. In this section we validate the efficiency of
the model-derived sorting algorithm on the MasPar, the GCel, and the
Paragon. Because sample sort was not implemented on the CM-5, and
because we know of no comparison material for the T3E, these two
platforms are not considered in this section.

312 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



On the MasPar, we compare the fastest model-derived sorting algorithm
with B-Flashsort [Hightower et al. 1992], which is a variation of sample
sort that employs splitter-directed routing in order to reduce the memory
requirements of sample sort. The source code of B-Flashsort is publically
available. Sorting on a 1024-processor GCel was considered in Diekmann et
al. [1994], where it was shown that a variation of bitonic sort is the fastest
sorting algorithm for the GCel when n/p is small, whereas sample sort is
the fastest algorithm when n/p is large. The bitonic sort variation employs
a clever embedding of the hypercube into the mesh, that maps hypercube
links that are used more frequently (links in the lower numbered dimen-
sions) to short paths in the mesh. The sample sort variation described in
Diekmann et al. [1994] is very similar to SSDR, except that no global
synchronization is performed after every communication step during the
routing phase. Because the Paragon also has a 2D mesh topology, we also
implemented these two algorithms on this platform.

Figure 32 shows the speedup of the machine-specific sorting algorithms
over the fastest model-derived algorithms. Below, the results for each
platform are discussed in detail.

7.2.1 Paragon. It can be seen from Figure 32 that the fastest machine-
specific sorting algorithm outperforms the fastest model-derived algorithm
for all measured problem sizes. The speedup ranges from 2.05 (for
n 5 64K) to 1.17 (for n 5 960K). However, these speedups do not reflect
the reductions in communication costs, which are much larger. For exam-
ple, when n 5 1M, the fastest BPRAM sort (SSBR) requires 5.1 msec. per
key, whereas the fastest machine-specific sort (sample sort) needs 2.1 msec.
per key, corresponding to an improvement by a factor of about 2.4.
However, because the local sorting steps require about 7.0 msec. per key,
this does not result in a similar overall improvement. Thus, if the processor

Fig. 32. Speedup of the machine-specific sorting algorithms over the model-derived sorting
algorithms.

A Quantitative Comparison of Parallel Computation Models • 313

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



speed would increase, the speedup of the machine-specific sort over the
model-derived sorting algorithm would also increase.

7.2.2 GCel. On this platform, the communication overhead incurred in
the variation of bitonic sort that employs a hypercube embedding is almost
a factor of 3.6 smaller than the communication overhead incurred in the
BPRAM bitonic sort. However, sample sort turned out to be more efficient
than bitonic sort for all measured problem sizes. The reason is that on this
moderate-scale platform, the number of startups incurred in bitonic sort is
not much smaller than the number of startups incurred in sample sort.
Figure 32 therefore shows the speedup of the machine-specific sample sort
(without global synchronizations between successive communication steps)
over the BPRAM sample sort (with global synchronizations). It can be seen
that the BPRAM algorithm does not incur a large performance penalty. The
reason is that the cost of a global synchronization is not prohibitive on the
GCel. For 2048 # n/p # 4096, it is even slightly faster than the machine-
specific sample sort, but this should be attributed to differences in the
bucket expansion.

7.2.3 MasPar. On this platform, B-Flashsort is substantially faster
than the BPRAM sample sort. The speedup varies from 4.8 (for n 5 100K)
to 2.9 (for n 5 1000K). The main reason for this is that B-Flashsort uses
the Xnet for communication, whereas the BPRAM sample sort uses the
global router. Some of the difference, however, should be attributed to
coding differences. For example, in B-Flashsort the local arrays are padded
with ` ’s to make them all the same size, so that so-called singular loops can
be used during the local radix sort instead of the more expensive plural
loops. Nevertheless, the fact that for matrix multiplication as well as for
sorting the largest performance penalty is incurred on the MasPar shows
that the models are less suited for developing cost-effective algorithms on
massively parallel platforms when the computation-to-communication ratio
is small.

8. CONCLUSIONS

In this article for the first time an attempt was made to provide a rigorous
account of the usefulness of parallel computation models for designing
parallel algorithms for existing parallel computer platforms. The investiga-
tion concentrated on two issues: how accurately do parallel computer
models predict actual performance and how efficient are the implementa-
tions of the parallel algorithms derived from these models. For the latter
question we compared actual performance between implementations de-
rived through different models against each other, as well as implementa-
tions obtained through these models against optimized implementations on
specific architectures.

Concerning the predictive capabilities of the models, this article has
shown that there are several situations in which the models do not
accurately predict the actual runtime behavior of an algorithm implemen-

314 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



tation. In fact, on all of the five hardware platforms we have been observing
performance deviations of at least 25%. In some cases even performance
deviations of the order of 100% to 200% were observed (see Table VI).
Although this might not be very surprising it definitely makes these models
unsuitable for actually predicting performance on existing hardware plat-
forms.

Of the three models we investigated, the BPRAM model more accurately
predicted the performance of three of the four algorithms on all five
hardware platforms (except for bitonic sort on the CM-5, cf. Table VI).
From this we can conclude that concentrating all the communication into
supersteps (BSP) does not trade off at all with the explicit message
blocking of communication (BPRAM). Therefore, as long as we cannot rely
solely on runtime support to combine messages into larger blocks, the
BPRAM model should be considered better in predicting actual perfor-
mance behavior. Actually, one might wonder whether the randomized
routing assumption, which is an integral part of the BSP model, does not
contradict the need for blocking messages.

In the light of the fact that none of the models were able to accurately
predict performance, it comes to no surprise that the implementations
derived from these models also did not measure up against optimized
implementations on the hardware platforms. The question to be raised is
whether these models could be used to incrementally improve the perfor-
mance of implementations. For this to be valid the following assertion must
hold: if algorithm A is faster than algorithm B for a specific model }, then
the implementation of algorithm A is going to be executed faster than the
implementation of algorithm B on a particular architecture. Although this
latter assertion has not been explicitly addressed by this article, we can
conclude from the observation that the SSBR implementation in fact
performed better on the Intel Paragon although its BSP costs are worse
than the SSDR implementation, and from the fact that Cannon’s algo-
rithms outperforms the BPRAM algorithm on the GCel, while its costs
according to the BPRAM model should be higher, that this assertion also
does not hold.

The above-summarized conclusions might seem to be very negative. One
should take into account, though, that the proposed computational models
definitely serve a purpose within the complexity of algorithms community,
in which actual performance numbers are not as important as providing a
better insight into the nature of parallel computing. As such their merit
should probably be better measured in the architectural details they are
able to avoid while still providing reasonable prediction of actual perfor-
mance behavior. Also, the von Neumann model, which was always assumed
to be very accurate by the theory community and which led to very
important theoretical results, in fact never was very accurate. Cache
performance, especially in the case of multilevel cache organizations, has
never been modeled accurately by the von Neumann model, and still is very
much an issue for research.

A Quantitative Comparison of Parallel Computation Models • 315

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



ACKNOWLEDGMENTS

Computational support was provided by IC3A in Amsterdam, Leiden Uni-
versity, NCSA at Urbana-Champaign, HPAC Delft, and KFA Jülich. The
authors wish to thank Arno van Duin, Arjan Bik, and the anonymous
referees for their comments.

REFERENCES

AGGARWAL, A., CHANDRA, A. K., AND SNIR, M. 1989. On communication latency in PRAM
computations. In Proceedings of the 1989 ACM Symposium on Parallel Algorithms and
Architectures (SPAA ’89, Santa Fe, NM, June 18–21), F. T. Leighton, Ed. ACM Press, New
York, NY, 11–21.

AGGARWAL, A., CHANDRA, A. K., AND SNIR, M. 1990. Communication complexity of
PRAMs. Theor. Comput. Sci. 71, 1 (Mar.), 3–28.

AHO, A., HOPCROFT, J., AND ULLMAN, J. 1983. Data Structures and Algorithms.
Addison-Wesley, Reading, MA.

BATCHER, K. 1968. Sorting networks and their applications. In Proceedings of the AFIPS
Spring Joint Computer Conference. AFIPS Press, Arlington, VA, 307–314.

BLANK, T. 1990. The MasPar MP-1 architecture. In Proceedings of IEEE CompCon
Spring. IEEE Press, Piscataway, NJ, 20–24.

BLELLOCH, G. E., LEISERSON, C. E., MAGGS, B. M., PLAXTON, C. G., SMITH, S. J., AND ZAGHA, M.
1991. A comparison of sorting algorithms for the connection machine CM-2. In Proceedings
of the 3rd Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA ’91,
Hilton Head, SC, July 21–24). ACM Press, New York, NY, 3–16.

CULLER, D., DUSSEAU, A., MARTIN, R., AND SCHAUSER, K. 1994. Fast parallel sorting under
LogP: From theory to practice. In Portability and Performance for Parallel Processing, Hey,
T. and Ferrante, J., Eds. John Wiley & Sons, Inc., New York, NY.

CULLER, D., KARP, R., PATTERSON, D., SAHAY, A., SCHAUSER, K. E., SANTOS, E., SUBRAMONIAN, R.,
AND VON EICKEN, T. 1993. LogP: Towards a realistic model of parallel
computation. SIGPLAN Not. 28, 7 (July), 1–12.

DE LA TORRE, P. AND KRUSHAL, C. P. 1991. Towards a single model of efficient computation in
real parallel machines. In Proceedings of the Conference on Parallel Architectures and
Languages Europe: Vol. 1, Parallel Architectures and Algorithms (PARLE ’91, Eindhoven,
The Netherlands, June 10–13), E. H. L. Aarts, J. van Leeuwen, and M. Rem, Eds. Lecture
Notes in Computer Science, vol. 505. Springer-Verlag, New York, NY, 7–24.

DIEKMANN, R., GEHRIG, J., LÜLING, R., MONIEN, B., NUBEL, M., AND WANKA, R. 1994. Sorting
large data sets on a massively parallel system. In Proceedings of the Syposium on Parallel
and Distributed Processing.

FORTUNE, S. AND WYLLIE, J. 1978. Parallelism in random access machines. In Proceedings of
the 10th Symposium on Theory of Computing. ACM Press, New York, NY, 114–118.

GEIST, A., BEGUELIN, A., DONGARRA, J., JIANG, W., MANCHEK, R., AND SUNDERAM, V. 1993. PVM
3 user’s guide and reference manual. Tech. Rep. TM-12187. Oak Ridge National Labora-
tory, Oak Ridge, TN.

GERBESSIOTIS, A. AND VALIANT, L. 1992. Direct bulk-synchronous parallel algorithms. In
Proceedings of the 3rd Scandinavian Workshop on Algorithm Theory, O. Nurmi, Ed. Lecture
Notes in Computer Science, vol. 621. Springer-Verlag, Berlin, Germany, 1–18.

GOUDREAU, M., LANG, K., RAO, S., SUEL, T., AND TSANTILAS, T. 1996. Towards efficiency and
portability: Programming with the BSP model. In Proceedings of the 8th Symposium on
Parallel Algorithms and Architectures. ACM Press, New York, NY, 1–12.

GROSCUP, W. 1992. The Intel Paragon XP/S supercomputer. In Proceedings of the 5th
ECMWF Workshop on the Use of Parallel Processors in Meteorology.

HEYWOOD, T. AND RANKA, S. 1992. A practical hierarchical model of parallel computation I:
The model. J. Parallel Distrib. Comput. 16, 212–232.

HIGHTOWER, W. L., PRINS, J. F., AND REIF, J. H. 1992. Implementations of randomized sorting
on large parallel machines. In Proceedings of the 4th Annual ACM Symposium on Parallel

316 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



Algorithms and Architectures (SPAA ’92, San Diego, CA, June 29–July 1). ACM Press, New
York, NY, 158–167.

HILL, J., MCCOLL, W., STEFANESCU, D., GOUDREAU, M., LANG, K., RAO, S., SUEL, T., TSANTILAS,
T., AND BISSELING, R. 1997. The BSPlib—The BSP programming library.

HONG, J. AND KUNG, H. 1981. I/O complexity: The red-blue pebble game. In Proceedings of the
13th Annual ACM Symposium on Theory of Computing (STOC 81). ACM, New York, NY,
326–333.

JUURLINK, B. H. H. 1998. Experimental validation of parallel computations models on the
Intel Paragon. In Proceedings of the International Parallel Processing Symposium and
Symposium on Parallel and Distributed Processing (IPPS/SPDP ’98).

JUURLINK, B. H. H. AND WIJSHOFF, H. A. G. 1993. Experiences with a model for parallel
computation. In Proceedings of the 12th Annual ACM Symposium on Principles of Distrib-
uted Computing (PODC ’93, Ithaca, NY, August 15–18). ACM Press, New York, NY, 87–96.

JUURLINK, B. AND WIJSHOFF, H. 1996a. A quantitative comparison of parallel computation
models. In Proceedings of the 8th Symposium on Parallel Algorithms and
Architectures. ACM Press, New York, NY, 13–24. Full version available as TR-96-01,
Leiden University, The Netherlands.

JUURLINK, B. AND WIJSHOFF, H. 1996b. Communication primitives for BSP computers. Inf.
Process. Lett. 58, 6 (June), 303–310.

JUURLINK, B. AND WIJSHOFF, H. 1996c. The E-BSP model: Incorporating unbalanced commu-
nication and general locality into the BSP model. In Proceedings of Eur-Par ’96 (Euro-Par
’96). Lecture Notes in Computer Science, vol. 1124. Springer-Verlag, Berlin, Germany,
339–347.

KRISHNAMURTHY, A., CULLER, D. E., DUSSEAU, A., GOLDSTEIN, S. C., LUMETTA, S., VON

EICKEN, T., AND YELICK, K. 1993. Parallel programming in Split-C. In Proceedings of
Supercomputing (Supercomputing ’93, Portland, OR, Nov. 15–19). IEEE Computer Society
Press, Los Alamitos, CA, 262–273.

KUMAR, V., GRAMA, A., GUPTA, A., AND KARYPIS, G. 1994. Introduction to Parallel
Programming. Benjamin-Cummings Publ. Co., Inc., Redwood City, CA.

LANGHAMMER, F. 1992. Second generation and teraflops parallel computers. In Parallel
Computing and Transputer Applications, Valero, M., Onate, E., Jane, M., Larriba, J., and
Suarez, B., Eds. IOS Press, Amsterdam, The Netherlands, 62–79.

LEISERSON, C. E., ABUHAMDEH, Z. S., DOUGLAS, D. C., FEYNMAN, C. R., GANMUKHI, M. N., HILL,
J. V., HILLIS, D., KUSZMAUL, B. C., ST. PIERRE, M. A., WELLS, D. S., WONG, M. C., YANG, S.-W.,
AND ZAK, R. 1992. The network architecture of the Connection Machine CM-5 (extended
abstract). In Proceedings of the 4th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA ’92, San Diego, CA, June 29–July 1). ACM Press, New York, NY,
272–285.

MCCOLL, W. F. 1993. General purpose parallel computing. In Lectures on Parallel
Computation, Gibbons, A. and Spirakis, P., Eds. Cambridge International Series on Parallel
Computation. Cambridge University Press, New York, NY, 337–391.

MCCOLL, W. 1995. Scalable computing. In Computer Science Today: Recent Trends and
Developments. Springer Lecture Notes in Computer Science, vol. 1000. Springer-Verlag,
Berlin, Germany.

THE MPI FORUM. 1993. MPI: A message passing interface. In Proceedings of Supercomputing
(Supercomputing ’93, Portland, OR, Nov. 15–19). IEEE Computer Society Press, Los
Alamitos, CA, 878–883.

NICKOLLS, J. 1990. The design of the MasPar MP-1: A cost-effective massively parallel
computer. In Proceedings of IEEE CompCon Spring. IEEE Press, Piscataway, NJ, 25–28.

OBERLIN, S., KESSLER, R., SCOTT, S., AND THORSON, G. 1996. Cray T3E architecture
overview. Cray Supercomputers, Chippewa Falls, MN.

SHUMAKER, G. AND GOUDREAU, M. 1997. Bulk-synchronous parallel computing on the
Maspar. In Proceedings of the World Multiconference on Systemics, Cybernetics and
Informatics. 475–481.

SKILLICORN, D. 1991. Models for practical parallel computation. Int. J. Parallel Program. 20,
2, 133–158.

A Quantitative Comparison of Parallel Computation Models • 317

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.



SKILLICORN, D., HILL, J., AND MCCOLL, W. 1997. Questions and answers about BSP. J. Sci.
Program. 6, 3, 249–274.

ULLMAN, J. AND YANNAKAKIS, M. 1991. The input/output complexity of transitive
closure. Ann. Math. Art. Intell. 3, 331–360.

VALIANT, L. G. 1990. A bridging model for parallel computation. Commun. ACM 33, 8 (Aug.),
103–111.

Received: April 1996; revised: May 1997; accepted: May 1998

318 • B. H. H. Juurlink and H. A. G. Wijshoff

ACM Transactions on Computer Systems, Vol. 16, No. 3, August 1998.


