
Alternation

ASHOK K. CHANDRA, DEXTER C. KOZEN, AND LARRY J. STOCKMEYER

I B M Thomas J. Watson Research Center, Yorktown Heights, New York

ABSTRACT. Alternation is a generalization of nondeterminism in which existential and universal quanti-
tiers can alternate during the course of a computation, whereas in a nondeterministic computation there
are only existential quantifiers. Alternating Turing machines are defined and shown to accept precisely
the recursively enumerable sets. Complexity classes of languages accepted by time- (space-) bounded
alternating Turing machines are characterized in terms of complexity classes of languages accepted by
space- (time-) bounded deterministic Turing machines. In particular, alternating polynomial time is
equivalent to deterministic polynomial space and alternating polynomial space is equivalent to determin-
istic 'exponential time. Subrecursive quantifier hierarchies are defined in terms of time- or space-bounded
alternating Tufing machines by bounding the number of alternations allowed during computations.
Alternating finite-state automata are defined and shown to accept only regular languages, although, in
general, 2 2 states are necessary and sufficient to simulate a k-state alternating finite automaton determin-
istically. Finally, it is shown that alternating pushdown automata are strictly more powerful than
nondeterministic pushdown automata.

KEY WORDS AND PHRASES: alternation, complexity

CR CATEGORIES: 5.22, 5.25, 5.26

1. Introduction

The concept o f nondeterminism has played a number o f impor tant roles in the theory
o f computat ion. For example, in formal language theory, certain classes o f languages
have been characterized in terms o f acceptance by nondeterminist ic au tomata [10];
in complexity theory, nondeterminism has provided the basis for the important
not ion o f NP-completeness [1, 5, 11]. The purpose o f this paper is to describe and
investigate a generalization o f nondeterminism which we call alternation.

In the case o f nondeterminist ic machines, for example, nondeterminist ic Turing
acceptors [10], the transition rules allow a single machine configurat ion a to reach
several configurat ions ill, • • •, flk in one step; by definition, the configurat ion a leads
to acceptance if and only if there exists a successor fli which leads to acceptance. In
addit ion to these "existential branches," an alternating Tur ing machine can also
make "universal branches" and "negat ing moves." In a universal branch, a config-
urat ion a can again reach several configurat ions ill, . . . , flk in one step, but now a
leads to acceptance if and only if all successors fll , flk lead to acceptance. In a
negating move, a configurat ion a has only one successor fl, and a leads to acceptance

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
Preliminary versions of this paper appeared in the Proceedings of the 17th Annual IEEE Symposium on
the Foundations of Computer Science, Houston, Texas, 1976 [4, 13].
The work of the second author was done in part at Cornell University and was supported by the National
Science Foundation under Grant DCR 75-09433.
Authors' address: IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598.
© 1981 ACM 0004-5411/81/0100-0114 $00.75

Journal of the Association for Computing Machinery, Vol. 28, No. 1, January 1981, pp. 114-133.

Alternation

i f f /3 leads to rejection. A fc
alternating Turing machine (A
nontermina t ing computat ion i
slightly more involved than
definit ion is similar to least-fi
that, viewing the computatioJ
equivalent ly as the existence
A T M s accept precisely the n
space complexity for ATMs
no loss o f ef f ic iency--hence
universal and existential bran

In Section 3 we characterize
(space-) bounded alternating
languages accepted by space-
shown that alternating time
squar ing o f the resource boun
un ion over constants c > 0
complexi ty hierarchy

L O G S P A C E C P T I M E

shifts by exactly one level wh
In Section 4 we consider Aq

(of blocks o f existential branc
we discuss the relationship bq
archies such as the polynomi
nomial- t ime hierarchy is det
al ternat ion facilitates natural
zero-degrees, such as logarith
ization o f a result o f Savitch
deterministic space S(n)2; nat
S(n) is entirely contained in (

Alternat ion can be applied
Section 5 we investigate the
pushdown automata. We sho,
regular languages, in general
state alternating finite auto:
language which can be acce[
some constant c can also be
therefore, alternating pushdo'
ministic pushdown automata.

Al though the ultimate uset
cations o f al ternation have al
classify the computat ional dif
and lower bounds on the tim,
that the problem is complete i
the problem of interest intfin:
to classify the problem in ten
then, using the charactefizati
terms of deterministic machi
are decision problems in log
strategies in combinatorial ga

Alternation 115

iff/3 leads to rejection. A foimalization of this idea yields the definition of the
alternating Turing machine (ATM), given in Section 2. Because of the possibility of
nonterminating computation paths, the formal definition of acceptance for ATMs is
slightly more involved than the informal definition outlined above. The basic
definition is similar to least-fixed-point definitions of recursion [22], but it is shown
that, viewing the computation of an ATM as a tree, acceptance could be defined
equivalently as the existence of a finite accepting subtree. It is then immediate that
ATMs accept precisely the recursively enumerable sets. We also define time and
space complexity for ATMs and show that negating moves can be eliminated with
no loss of efficiency--hence the term alternation referring to the alternation of
universal and existential branches.

In Section 3 we characterize the complexity classes of languages accepted by time-
(space-) bounded alternating Turing machines in terms of complexity classes of
languages accepted by space- (time-) bounded deterministic Turing machines. It is
shown that alternating time and deterministic space are equivalent to within a
squaring of the resource bound, and that alternating space S(n) is equivalent to (the
union over constants c > 0 of) deterministic time e s~"~. Thus the deterministic
complexity hierarchy

LOGSPACE _ PTIME _ PSPACE __. EXPTIME __. EXPSPACE _.C . . .

shifts by exactly one level when alternation is introduced.
In Section 4 we consider ATMs with the restriction that the number of alternations

(of blocks of existential branches with blocks of universal branches) is bounded, and
we discuss the relationship between these devices and subrecursive quantifier hier-
archies such as the polynomial-time hierarchy [24]. The "zero-degree" of the poly-
nomial-time hierarchy is deterministic polynomial time. The concept of bounded
alternation facilitates natural definitions of quantifier hierarchies based on other
zero-degrees, such as logarithmic space or exponential time. We also give a general-
ization of a result of Savitch [20] that nondeterministic space S(n) is contained in
deterministic space S(n)2; namely, the bounded quantifier hierarchy based on space
S(n) is entirely contained in deterministic space S(n) 2.

Alternation can be applied to classes of automata other than Turing machines. In
Section 5 we investigate the power of alternating finite automata and alternating
pushdown automata. We show that although alternating finite automata accept only
regular languages, in general 2 z' states are necessary and sufficient to simulate a k-
state alternating finite automaton deterministically. Finally, we show that any
language which can be accepted by a deterministic Turing machine in time c" for
some constant e can also be accepted by some alternating pushdown automaton;
therefore, alternating pushdown automata are strictly more powerful than nondeter-
ministic pushdown automata.

Although the ultimate usefulness of alternation remains to be seen, several appli-
cations of alternation have already been made. One goal of complexity theory is to
classify the computational difficulty of problems, either by establishing explicit upper
and lower bounds on the time or space required to solve the problem or by showing
that the problem is complete in some complexity class (see, e.g., [1, 11, 24, 26, 27]). If
the problem of interest intrinsically involves alternating quantifiers, it may be easier
to classify the problem in terms of time- or space-bounded alternating machines and
then, using the characterizations of Section 3, translate the classification to one in
terms of deterministic machines. Two types of problems which involve quantifiers
are decision problems in logic and problems concerning the existence of winning
strategies in combinatorial games. By exploiting the equivalence between alternating

116 A . K . CHANDRA, D. C. KOZEN, AND L. J. STOCKMEYER

linear space and deterministic exponential time, Fischer and Ladner [6] prove that
the validity problem for propositional dynamic logic requires exponential time to
solve. For certain two-person combinatorial games, Stockmeyer and Chandra [25]
and Kasai, Adachi, and Iwata [12] show that it requires exponential time to determine
which player has a winning strategy. By employing alternating Turing machines,
Berman [2] classifies precisely the decision problems for the first-order theories of
real addition and integer addition, and Kozen [14] classifies the elementary theory of
Boolean algebras. Ruzzo [19] has shown that the class of languages reducible to
context-free languages in logspace can be characterized by a class of alternating
Turing machines.

An alternating machine can also be viewed as a machine with (unbounded)
parallelism in which processes communicate only with their parent or offspring.
When in a configuration a with several successors fll , ilk, the machine spawns k
independent offspring which run to completion, report acceptance or rejection back
to their parent a, and then die. The parent a combines the answers in a simple way
(by ANDing the answers if a is universal or by ORing the answers if a is existential),
the resulting answer is passed up to a's parent, and so on. Investigation of the power
of a variety of parallel machine models [4, 7, 9, 17, 21, 23] has led to the formulation
of a "parallel computation thesis" [4, 7], which states that time on a parallel machine
is polynomially related to space on a serial (Turing) machine. Since one of the
characterizations of Section 3 says that alternating time and deterministic space are
polynomially related, one implication of this thesis is that an alternating Tunng
machine is, to within a polynomial, among the most powerful types of parallel
machines.

To conclude, the notion of alternation impacts several topics in computer science,
including time and space complexity, logic, games, and parallelism. Alternation leads
to succinct representations in certain instances such as finite automata, and it adds
power in others such as pushdown automata. Certain problems seem more convenient
to program using the construct of alternation, but we do not know whether alternation
will find its way into programming languages or have a role to play in structured
programming. Such questions present themselves for further research.

2. Alternating Turing Machines

An alternating Turing machine is like a nondeterministic Turing machine [cf. 10]
with the addition of a function associating one of the three Boolean functions A
(and), V (or), and 7 (not) with each non final state.

Definition 2.1. An alternating Turing machine (ATM) is a seven-tuple

M = (k , Q , ~ , r , & q o , g),
where

k is the number of work tapes,
Q is a t'mite set of states,

is a t'mite input alphabet (~ fE~ is an endmarker),
r is a f'mite work tape alphabet (# E F is the blank symbol),
6 _C (Q x I ~ × (~ tA {~b})) × (Q x (F - {#})k X (left, right} k+l) is the next move
relation,
qo E Q is the initial state,
g: Q ~ {A, V, 7, accept, reject}.

If g(q) = A (respectively, V, --7, accept, reject), then q is said to be a universal
(respectively, existential, negating, accepting, rejecting) state.

Alternation 117

The machine has a read-only input tape with endmarkers and k work tapes,
initially blank. A step of M consists of reading one symbol from each tape, writing a
symbol on each of the work tapes, moving each of the heads left or right one tape
cell, and entering a new state, in accordance with the transition relation & Note that
the machine cannot write the blank symbol.

Definition 2.2. A configuration of an alternating Turing machine M is an element
of

CM = Q x ~* x ((r - {#)).)k × Nk+l

representing the state of the finite control, the input, the nonblank contents of the k
work tapes, and k + 1 head positions; see, for example, [10]. If q is the state associated
with configuration a, then a is said to be a universal (respectively, existential, negating,
accepting, rejecting) configuration if q is a universal (respectively, existential, negating,
accepting, rejecting) state. The initial configuration of M on input x is

OM(X) = (qo, x, ~)~, O, . . . , 0),

k-~l
where ~ is the null string.

A configuration represents an instantaneous description of M at some point in a
computation.

Definition 2.3. Given M, we write a t- fl and say /3 is a successor of a if
configuration/3 follows from configuration a in one step, according to the transition
rules ~. The relation ~ is not necessarily single valued, since 8 is not. We do, however,
require that 8 is such that accepting and rejecting configurations have no successors,
universal and existential configurations have at least one, and negating configurations
have exactly one. The reflexive transitive closure of k- is denoted t-*.

A computation path of M on x is a sequence a0 ~ o£1 ~ " ° • ~ O L n , where a0 = aM(X).

We wish to define acceptance for such machines in a way which will capture the
following idea. A single process is started in the initial configuration OM(X). Subse-
quently, if a process is in an existential configuration a, and/31 /3m are all the
configurations following from a in one step, then the process spawns m distinct
offspring processes which concurrently try to determine whether any of the/3i lead
to acceptance. Some of the offspring computations may be infinite, but if at least one
is accepting, this information is reported back to the parent process waiting at a, and
it in turn reports back to its parent process that a leads to acceptance. If a process is
in a universal configuration, it must determine whether all its offspring lead to
acceptance. If a process is in a negating configuration, it must determine whether its
unique offspring leads to rejection. A process in an accepting (rejecting) configuration
just reports success (failure) to its parent.

We could formalize this idea in terms of a recursive procedure for labeling
configurations as 1 (leading to acceptance) or 0 (leading to rejection) and say M
accepts x iff the start configuration is ever labeled 1. The recursive procedure would
be

{ A f (f l) if a is universal,

V f (f l) if a is existential,

j((a) = ~f(fl) where a t- fl, if a
1 if a is accepting,
0 if a is rejecting.

is negating,

118 A . K . CHANDRA, D. C. KOZEN, AND L. J. STOCK_MEYER

However, the usual semantics will not suffice, since we wish to allow a process to
return to its parent in cases where, although some offspring have not returned, it has
enough information to determine what its labeling must be. For example, if a t- fl,
o~ t-- y, ot is universal, andf(f l) = O, then we want f (a) = O, regardless of whether y is
ever labeled. In order to accomplish this, we extend the definition of the Boolean
operations A, V, ~ to domain {0, ±, 1) according to the following tables:

A: 1 .J_ 0 V: 1 .1_ 0 ~:
1 1 J- 0 '111 1 [~]

i ± ±i0 l /± ±
0 0 0 0 .~1[_1_ 0

Thus V gives least upper bound in the ordering 0 < ± < 1, and A gives greatest
lower bound. Note that V and A are associative. Intuitively, ± represents an
incomplete computation; for example, note that 0 A _J_ = O, as desired.

Let M be an alternating Turing machine, and let X E X* be an input. A labeling
of configurations is a map

l:CM---~ (0, ± , 1}.

Let ~- be the operator mapping labelings to labelings defined as follows:

I A l(fl) if a is universal,

V l(fl) if a is existential,
*(l)(a) = ~ #

-~l(fl) if a is negating and (~ F- fl,
1 if c~ is accepting,
0 if a is rejecting.

Let -m be the partial ordering on labelings defined by extending the ordering

0 1
\ /

±

coordinatewise to functions from CM to (0, L, 1). It is easily checked that z is
monotone with respect to ~; that is, if I -m l', then ~-(1) -m ~'(l'). Therefore T has a least
fixed point

l* = sup ~'m(~2),
rn~N

where the supremum is with respect to -m, where

~'°(l) = 1,
Tm+l(/) = ,r(,rm(l)),

and where f~ is the _m-minimal labeling ~2(a) = ± for all a.

Definition 2.4. M accepts x iff I*(aM(X)) = 1; M rejects x iff I*(OM(X)) = 0; M
halts on x iff it either accepts or rejects x; and

L(M) = {x E X* [M accepts x) .

In the case that M has no negating states, other equivalent definitions of acceptance
for alternating machines are given by Fischer and Ladner [6] and Ladner et al. [15].

We may consider a nondeterministic Turing machine to be an alternating machine
with no universal or negating states, and a deterministic Turing machine to be a
nondeterministic machine whose next move relation ~ is single valued. The sets

Alternation 119

accepted by nondeterministic Turing machines under this definition coincide with
those of the classical definition [10], so alternating machines accept all recursively
enurnerable (r.e.) sets.

We wish to show that alternating machines accept only r.e. sets. To do this, we
show that we can restrict our attention to labelings of finite subsets of CM, similar to
the labeling of finite subtrees of the computation tree as in [4], or limiting depth of
recursion as in [13].

Let C _ CM, and let ~'c be the operator defined by

~'(l) (a) if a E C,
Tc(l) (a) =

t L otherwise.

Let

l~ = sup ~'~(f~).
r a i n

rc is the same as ~- but ignores configurations outside C. 15 exists, since ~'c is monotone
with respect to _, and is the least fixed point of rc.

C may be, for example, the set of configurations reachable from aM(X) in t or
fewer steps. In this case, 1~ gives a labeling of the computation tree truncated to
height t in the formalism of [4], or labelings of configurations when depth of recursion
is limited to t in the formalism of [13].

Note that if C is finite, then !$ is computable. We can start with the restriction of
f~ to C and then successively apply ~'c until no more changes occur. This must happen
within I CI steps, since ~'c is monotone. We need only look at configurations in C,
since we know rc() is always _L outside of C. This will be the basis of several
simulation algorithms in later sections.

We need to establish some elementary properties of l$.

LEMMA 2.1. I f C C_ D, then l~ r-_ l~ and T~(f~) ~_ ¢~(~2)for all m.

PROOF. The proof is by induction on m, using the monotonicity of ~'c and
TD. []

For a E CM and m E N define

C(a, m) = (fl ~ CM[a t-*fl in m or fewer steps).

LEMMA 2.2. l~(a,m)(O 0 = Tm+l(~'~)(O/).

PROOF. By preceding remarks, rc~,,.~ need be applied to ~2 at most m + 1 times
before the fixed point is reached; that is,

lS(~,m)(O0 m + l = ~'c~o.m~(f~)(a).

T m+l /~'~x/O/x I" By Lemma 2.1, c~o~)~)~) - r'~+l(~2)(a). The intuition behind the other direction,
~"~+~(f~)(a) ram_ r~m~(~2)(a), is that the value of rm+l(~)(a) is not affected by the labeling
of configurations which cannot be reached from a within m or fewer steps. The
formal proof, which we leave to the reader, is a straightforward induction on m. []

LEMMA 2.3. For every a there is a finite set C _C CM such that lc(a)* = l*(a).

PROOF. Let f (a) be the least m such that Tm+l(~'~)(a) = l*(a). By Lemma 2.2,
C(a, f (a)) is the desired finite set. []

THEOREM 2.4. The family of sets accepted by alternating Turing machines is exactly
the family of r.e. sets.

120 A.K. CHANDRA, D. C. KOZEN, AND L. J. STOCKMEYER

PROOF. Such machines accept all r.e. sets since every nondeterministic machine
may be considered an alternating machine, by foregoing remarks.

For the converse, i f M and x are given, enumerate finite subsets C of CM, construct
l~, and accept if ever I~(OM(X)) = 1. I f such a C exists, then M accepts x by Lemma
2. l, and if M accepts x, then such a C exists by Lemma 2.3. []

The definition of time and space usage arises naturally.

Definition 2.5. Let M be an ATM, and let s, t ~ N. M accepts x in time t if
I~(OM(X)) = 1, where

C = C(OM(X), t) = (fl[OM(X) F--*fl in t or fewer steps}.

M accepts x in space s if l~(oM(X)) = 1, where

D =

where space(a) is the sum of the
configuration a.

Let T and S be functions from

{a I space(a) _< s},

lengths of the nonblank work-tape contents in

N to the real numbers. M accepts in time T(n)
(respectively, space S(n)) provided that for each x C L(M), M accepts x in time at
most T([x I) (respectively, space at most S([x I)), where I xl denotes the length of x.

Again, the classical definitions of time- and space-bounded acceptance by deter-
ministic and nondeterministic Tufing machines are equivalent to ours when we
consider a nondeterministic machine to be an ATM with no universal or negating
states, and a deterministic machine to be a nondeterministic machine with a single-
valued next move relation.

ASPACE(S(n)) (respectively, DSPACE(S(n)), NSPACE(S(n))) denotes the class
of languages accepted by alternating (respectively, deterministic, nondeterministic)
Turing machines which accept in space S(n). The definitions of ATIME(T(n)) ,
DTIME(T(n)) , and NTIME(T(n)) are analogous. In particular, let

A L O G S P A C E = ASPACE(logn),
APTIME = 1.3 ATIME(nC),

APSPACE = tJ ASPACE(nC),
A E X P T I M E = O ATIME(2nc),

AEXPSPACE = O ASPACE(2~) ,

where unions are over all constants c > 0. Similarly, the notations LOGSPACE,
PTIME, P S P A C E , etc., are defined with respect to deterministic complexity, and
NLOGSPACE, NPTIME, etc., are defined with respect to nondeterministic com-
plexity.

The following theorem illustrates why we have chosen to call these automata
alternating Turing machines.

THEOREM 2.5. For every A T M M there is an A T M N such that N has no negating
states, L (M) = L(N), and fo r all x E L (M) and all s, t ~_ O, i f M accepts x in time t
(space s), then N accepts x in time t (space s).

PROOF. The simulating machine will remember in its finite control the parity of
the number of negations that have been encountered. When the parity is odd, the
machine will compute A instead of V, accept instead of reject, etc. In effect, the
negations are pushed down to the final states by deMorgan's laws.

Let M be any alternating Turing machine. Let N be another machine whose finite
control consists o f two copies of the finite control of M,

Q+ = (q÷lq E Q} and Q - = { q - l q ~ Q}.

Alternation

Q+ and Q - will be duals. I f q
rejecting) state of M, then q
rejecting) state of N, and q- is al
state of N. The transition rela
configurations o~ t - fl, if a is no

ot + k

otherwise,

a + k

where a + (respectively, a -) is o
q. The initial state of N is q ~.

For C ~ CM, let

A straightforward inductive ar t

*~(~)(~

thus

Taking C = Cm and noting tha
that space is preserved, take
take C = C(OM(X), t). []

The following theorem state.'
we can restrict attention to con7

THEOREM 2.6

(a) I f T(n) ~_ n is constructib
T(n), then there is an A TM N s~
on any input x are of length at

(b) I f S(n) -> log n is constru,
S(n), then there is an A TM N s:
any input x are of length at mos
a reachable f rom ON(X) satisfy~

PROOF

(a) By Theorem 2.5 we ma
negating states. N on input x
then simulate M, counting one
counter runs out before the sin
rejects. The restriction on the k
it remains to show that L(N) =

After T(n) has been marked
configurations of N may be ref
time left on the counter. By thq
1"(<o~, t>) = 0 for t < 0. Clearl)
f rom oN(x) to <o~t(x), T(n)> is

Let -- be the equivalence rel
and V preserve - (i.e., if u --

A Iternation 121

Q+ and Q- will be duals. If q E Q is a universal (existential, negating, accepting,
rejecting) state of M, then q+ is a universal (existential, existential, accepting,
rejecting) state of N, and q - is an existential (universal, universal, rejecting, accepting)
state of N. The transition relation 8 of N is defined so that for any input x and
configurations a I-- fl, if a is not a negating configuration, then

a + t- fl+ and a - ~-/3-;

otherwise,

a + ~ fl- and a- F- fl+,

where a + (respectively, a -) is a with state q+ (respectively, q-) substituted for state
q. The initial state of N is q~.

For C C.C_ CM, let

C' = {a +, a - l a E C}.

A straightforward inductive argument shows that for all m, C, and a,

~-~ (~) (a) = ~-~ , (~) (a +) = ~ - ~ . (~) (a -) ;

thus

t ~ (a) * + = l c . (a) = ~ l b , (a -) .

Taking C = CM and noting that ON(X) = O~t(X), it follows that L(M) = L(N). To see
that space is preserved, take C = {alspace(a) -- s}. To see that time is preserved,
take C = C(oM(X), t). []

The following theorem states that for honest resource bounds (see [10, See. 10.6])
we can restrict attention to computations for which all computation paths terminate.

THEOREM 2.6

(a) I f T(n) ~ n is constructible in time O(T(n)), and if the A T M M accepts in time
T(n), then there is an A T M N such that L (M) = L(N) and all computation paths of N
on any input x are of length at most O(T(Ix D).

(b) I f S(n) ~ log n is constructible in space S(n), and if the A TM M accepts in space
S(n), then there is an A TM N such that L (M) = L(N), all computation paths of N on
an), input x are of length at most cS(l~l) for some constant c > O, and all configurations
a reachable from ON(X) satisfy space(a) <_ S(I x [).

PROOF

(a) By Theorem 2.5 we may assume without loss of generality that M has no
negating states. N on input x with n = I x [will first construct T(n) on an extra tape,
then simulate M, counting one on its extra tape for each simulated step of M. If the
counter runs out before the simulation reaches a halting configuration of M, then N
rejects. The restriction on the length of computation paths of N is clearly satisfied, so
it remains to show that L(N) = L(M).

After T(n) has been marked o f fand while N is engaged in the simulation of M, the
configurations of N may be represented as (a, t), where a E CM and t represents the
time left on the counter. By the definition of N, (a, t) F-N (fl, t -- 1) i f f a)--Mfl and
l*((a, t)) = 0 for t < 0. Clearly N accepts x iffl*((OM(X), T(n))) = l, since the path
from ON(X) to (aM(X), T(n)) is deterministic (it only involves constructing T(n)).

Let - be the equivalence relation on (0, .1,, l} generated by 0 - .1_. Note tha t /k
a n d V p r e s e r v e - (i . e . , i f u - v a n d z - w , t h e n u / k z - v / k w a n d u V z - v V w) .

122 A . K . CHANDRA, D. C. KOZEN, AND L. J. STOCKMEYER

Since M has no negating states, it should be evident that

l*((trM(X), T(n))) -= lCtoMtx,,rt,~,(OM(X)),

that is, N simulates M restricted to configurations in C(OM(X), T(n)) provided that we
view 0 and & as equivalent. But since M accepts in time T(n), it follows that M
accepts x iff N accepts x.

(b) Let c be a constant such that for all n, c s('~ is an upper bound on the number
of configurations at E CM with space(at) _< S(n). Recall that for any C C CM, l~ =
• ~(~2) where m is the cardinality of C. It follows that M accepts in time c s~').

N on input x will first construct S(n) on a tape. On one track of that tape, N
initializes a counter to cSt"); the counter is written in c-ary notation and occupies
space S(n). Now N simulates M using the S(n) storage on another track of the tape.
After each simulated step, N decrements the counter by one. If either the counter
reaches zero or M attempts to use more than S(n) tape squares, then N rejects. The
proof that L(N) = L(M) is similar to part (a). []

3. Complexity

In this section we study the complexity of alternating machines and establish
fundamental relationships between alternating and deterministic complexity. In the
last section we defined time and space for alternating machines and showed that
without loss of efficiency in either time or space we could restrict our attention to
machines with no negating states. We shall henceforth assume all machines are of
this form.

The following four theorems are the main results of this section. They relate
alternating time and space to deterministic time and space.

THEOREM 3.1. I f S(n) _~ n, then NSPA CE(S(n)) C Uc>o A TIME(c . S(n)2).

THEOREM 3.2. I f T(n) _> n, then ATIME(T(n)) C DSP.4CE(T(n)).

THEOREM 3.3. I f S(n) _> log n, then .4SP.4CE(S(n)) C t.Jc>o DTIME(cS~").

THEOREM 3.4. I f T(n) _> n and c > O, then

DTIME(T(n)) C ASP.4CE(c. log T(n)).

Theorems 3.3 and 3.4 can be combined into the following characterization.

COROLLARY 3.5. l f S(n) _> log n, then .4SPACE(S(n)) = U~>oDTIME(cStn)).

The above results not only characterize the power of alternation but also reveal a
striking relationship between Turing machine time and space.

COROLLARY 3.6

EXPSP.4CE = .4EXPTIME,
E X P T I M E = APSP.4CE,

PSPACE = APTIME,
P T I M E = .4LOGSPACE.

That is, the deterministic hierarchy

LOGSPACE C P T I M E C PSP.4CE C E X P T I M E C EXPSP.4CE C . . .

shifts by exactly one level when alternation is introduced.

PROOF OF THEOREM 3.1. The technique is similar to Savitch's [20] for the deter-
ministic simulation of nondeterministic space-bounded computations. It is based on

.4 lternation

the fact that if M is a nondete
then M accepts x iff there is a
of length at most S(} x i), such
accepting configuration, and e
ecessor according to the trat
configurations is of cardinalit
length at most c s°'l.

We first prove the result for
alternating machine M' simul~
in time O(S(n)2). It then writes
existential branching) an accep
writes down c s°') in c-ary nora
form (at, fl, k), where at and fl
notation, 0 _< k _< c s°~). The sul
k > l, it guesses a middle conJ
most S(n), then verifies in para
fewer steps and y ~* fl in k/2
(at, y, k/2) and (y, fl, k/2). If k

The entire computation requ
takes O(S(n)) steps, or O(S(n)2~

To remove the restriction oft
tially guess whether S(n) = l,
guessed value. If M accepts x, t
S(n); thus M ' will still accept
Lemma 2. l, M' does not accept

PROOF OF THEOREM 3.2. A
alternating machine which acce
lating M on input x first constl
OM(X). It then builds and traver.

and edges t-, calculating l~(fl) il

ctF

=

1
0

since 1~ is a fixed point of *c. FiJ
At any point in the computatic

only a and a string representing t
The string may be a d-ary nume
configuration of M, denoting thl
string need be of length at most

To remove the assumption of
above for successive values T(n)
(the one for the correct value of:
then no such attempt will, by Let

The restrictions S(n) _> n and]

L

Iternation 123

~ e fact that if M is a nondeterministic Turing machine which accepts in space S(n),
then M accepts x iff there is a string of encodings of configurations of M on x, each
~of length at most S(I x D, such that the first is the initial configuration, the last is an
accepting configuration, and each intermediate configuration follows from its pred-

}~ ecessor according to the transition rules of M. If the alphabet used to encode
configurations is of cardinality c, and if such a string exists, there must be one of

length at most c s(~).
We first prove the result for S(n) constructible in deterministic time O(S(n)2). The

alternating machine M ' simulating M on input x, [x [= n, first marks off S(n) tape
in time O(S(n)2) • It then writes down the initial configuration of M and guesses (using
existential branching) an accepting configuration of M of length at most S(n). It then
writes down c s(n) in c-ary notation and calls a subroutine which takes inputs of the
form (a, fl, k), where a and fl are configurations of M and k is a number in c-ary
notation, 0 < k _< c s(n). The subroutine checks whether a t-* fl in k or fewer steps. If
k > 1, it guesses a middle configuration "t (using existential branching) of length at
most S(n), then verifies in parallel (using universal branching) that a k-* ~, in k /2 or
fewer steps and y V-* fl in k/2 or fewer steps, by calling itself recursively with inputs
(a, "f, k/2) and (7, fl, k/2). If k ___ 1, it checks whether a -- fl or a t- ti-

The entire computation requires log2c s(nl = O(S(n)) recursive calls, and each call
takes O(S(n)) steps, o r O(S(n) 2) in all.

To remove the restriction of constructibility, have the simulating machine existen-
tially guess whether S(n) = 1, 2 and perform the above computation for the
guessed value. If M accepts x, then the correct value of S(n) will be guessed in time
$(n); thus M' will still accept in time O(S(n)2). If M does not accept x, then by
Lemma 2.1, M' does not accept x for any guessed values of S(n). []

PROOF OF THEOREM 3.2. Assume T(n) is tape constructible, and let M be an
alternating machine which accepts in time T(n). A deterministic machine M' simu-
lating M on input x first constructs T(n) and writes down the initial configuration
OM(X). It then builds and traverses the tree with vertices labeled with

C = (flloM(x) ~-* fl in T(n) or fewer steps},

and edges I--, calculating I~(fl) in postorder; recall that for a E C,

A l~(fl) if a is universal,
,L~B

l~(a) = V l~'(fl) if a is existential,

l if a is accepting,
0 if a is rejecting,

since It- is a fixed point of rc. Finally, M' accepts iff I~(OM(X)) = 1.
At any point in the computation, if M' is visiting a node of the tree labeled a, then

only a and a string representing the position of a in the tree need appear on the tape.
The string may be a d-ary numeral, where d is the maximum outbranching of any
configuration of M, denoting the unique path from the root to that vertex. Such a
string need be of length at most T(n).

To remove the assumption of constructibility, M' may iterate the computation
above for successive values T(n) = l, 2 If M accepts x, then one such attempt
(the one for the correct value of T(n)) results in acceptance. If M does not accept x,
then no such attempt will, by Lemma 2.1. []

The restrictions S(n) >_ n and T(n) >_ n in the statements of Theorems 3.1 and 3.2

124 A . K . CHANDRA, D. C. KOZEN, AND L. J. STOCKMEYER

can be relaxed to S(n) _> log n and T(n) _> log n provided alternating machines are
equipped with a device for reading input symbols without scanning the entire input
tape. One way to do this is to allow alternating machines to write down a number i
in binary, taking time log i, and then enter a state requesting the ith input symbol.
With this convention it is not difficult to see that the proofs of Theorems 3.1 and 3.2
still work in the cases S(n) _> log n and T(n) _> log n, since the input x need not
appear explicitly in configurations. The input appears only on the input tape and its
symbols are accessed as needed.

PROOF or THEOREM 3.3. Suppose M is an ATM which accepts in space S(n),
where S(n) is constructible in time exponential in S(n). A deterministic machine M'
on input x first constructs S(n), n Ix 1, and then calculates * = IC(OM(X)), where

C = {a ~ CMI spaceta) _< S(n)}.

l~ is calculated by writing down all configurations in C (there are at most b s("~ of
them, for some constant b), labeling each configuration ± initially, then successively

is lc. M ' then accepts applying I"c until no more changes occur. The resulting labeling" *
if l~(oM(x)) = 1.

Since zc is monotone, it need be applied at most b s(n~ times. Thus M ' makes at
most b s"° passes over a tape of length at most S(n) • b s('~, so M' runs in time c s°'~ for
some constant c.

The case in which S(n) is not constructible in time exponential in S(n) is handled
as in the proof of Theorem 3.2. In this case, the running time of M ' on inputs
accepted by M is at most

S(n)
E C m,

rn=l

which is still at most d s(") for some constant d. []

PROOF OF THEOREM 3.4. Let M be a deterministic Turing machine which ac-
cepts in time T(n). By increasing the time to T'(n) = d . T(n) ~ for some constant d, we
can assume that (i) M has only one tape which is one-way infinite to the right, (ii) the
input word is initially written left-justified on the otherwise blank tape, (iii) for all
inputs x, M does not halt on x, and (iv) M accepts an input x by entering a designated
state q~ at some time during the computation on x. (I fx is accepted, qa is entered on
or before step T'(I x 1).)

Say that M has states Q and tape alphabet F, and let A = Q t_J F O ($). Let x be
an input, and let n = [x [. The computation of M on x is an (infinite) sequence of
configurations ao, Ctl, or2, We represent each configuration as an (infinite) word
of the form $ # q v # # # . . . , where q E Q and #v E (F - (#})*; the meaning is that
#v is written on the nonblank portion of the tape, and the machine is in state q
scanning the first symbol of v. For example, $ q o x # # # . . . represents the initial
configuration ao. For t, j _> 0, let Wt.j E A be the j t h symbol of the representa-
tion of at. Since M is deterministic, it is easy to see that there is a partial function
Nextm: A 4 -* A such that

yt, j -~ N e x t M (y t - l , j - 1 ,]O-l,j, y t - l , j+ l , "yt-l,j+2)

for all t, j _> 1. NextM depends on M but not on x. Also, M accepts x iff there is a t
and j with 1 ~_ t, j _~ T'(n) such that yt j = q~.

The alternating machine M ' which simulates M first guesses t a n d j using existential
branching and then checks whether or not yt, j ~ - qa by working backward through
the computation of M. At each stage of the checking procedure, M ' has integers t

Alternation

and j and a symbol z E A, anc
or reject accordingly. To chec
$) or t = 0 (because the j th syl
that "rt.j = z for t, j _> 1, M' g
branching. If z # NextM(z-1,
then M' chooses an integer k,
checking procedure to check'

The space required for this
the integers t and j. These in
integer b such that space c . k
notation. []

4. Hierarchies

In this section we give achara,
of alternating machines.

Definition 4.1. Let M be
and let x be an input. We sa)

OM(X) '

and ai is a universal configur
m -- 1, then m < A(I x I).

In other words, any t--p~
configurations at most A(I x I)

Definition 4.2. For k _>
alternation bounded alternati:
(respectively, universal).

For example, a El-machine
a X0 or No machine is a deter

Definition 4.3. AXg (resp
(respectively, Ilk-) machines

For example,

Let ~ , II~ denote the cla
Stockmeyer [24]. The followil
problems in this hierarchy.

THEOREM 4.1. X'g = AX~

PROOF. The proof is by
well-known techniques (see, t

The above theorem also gi,

= b q S x S 3 @ ' l 2
e~ = (i ~ $ X $ 3 I M I t l l

where /Q is a suitable encodiJ

Alternation 125

and j and a symbol z E A, and the goal is to check whether or not T,.J = z and accept
or reject accordingly. To check that 3'tj = z is easy if e i ther j = 0 (for then z must be
$) or t = 0 (because t h e j t h symbol of S q o x # # # . . . can be found directly). To check
that "tt.J = z for t, j >_ 1, M ' guesses four symbols Z-l, zo, zl, z2 E A using existential
branching. If z ~ NeXtM(Z-1, zo, Zx, z2), then M ' rejects. If z = NextM(z-1, z0, z~, z2),
then M' chooses an integer k, - 1 __ k _< 2, using universal branching and repeats the

{ checking procedure to check whether or not Tt-~.j+k = z~.
The space required for this procedure is dominated by the space required to record

the integers t and j. These integers are O(T(n)2). Hence for each c > 0 there is an
integer b such that space c . log(T(n)) suffices when the integers are written in b-ary

notation. []

4. Hierarchies

In this section we give a characterization of quantifier alternation hierarchies in terms
of alternating machines.

Definition 4.1. Let M be an alternating Turing machine with no negating states,
and let x be an input. We say M is A(n)-alternation bounded on x if whenever

OM(X) = 010 l -* a l l - * 0i2 ~--* *'* l -* am,

and ai is a universal configuration iff ai+~ is an existential configuration for 0 _< i _<
m - l, t h e n m < A (I x l) .

In other words, any t - -pa th out of OM(X) alternates universal and existential
configurations at most A(I x I) - l times.

Definition 4.2. For k _ 1, a ~k-machine (respectively, Hk-machine) is a k-
alternation bounded alternating machine M such that the initial state qo is existential
(respectively, universal).

For example, a ~ - m a c h i n e is a nondeterministic Turing machine. By convention,
a ~0 or Ho machine is a deterministic machine.

Definition 4.3. A~2~ (respectively, AI-I~) is the class of sets accepted by Ek-
(respectively, Ilk-) machines which accept in polynomial time.

For example,

AZg = AUg = PTIME,
AE~ = NPTIME,
AFI~ = co-NPTIME.

Let Z'~, I-I~ denote the classes of the polynomial-time hierarchy, as defined by
Stockmeyer [24]. The following theorem will perhaps aid in the placement of natural
problems in this hierarchy.

THEOREM 4. !. ~,~ = A~g and YI~ = AI-I~.

PROOF. The proof is by induction on k. It is a straightforward application of
well-known techniques (see, for example, [27]) and is left to the reader. []

The above theorem also gives us new complete problems for Z~ and l'I~, namely,

S~ = (~ t S x S a l ~ l t l M is a Z,-machine which accepts x in time t),
P~ = {g'lSx$31Mr'lM is a Hk-machine which accepts x in time t},

where h~ is a suitable encoding of the alternating machine M. The construction is a

126 A . K . CHANDRA, D. C. KOZEN, AND L. J. STOCKMEYER

straightforward generalization of the case for Z{ which appears in [8, Th. 6], once we
observe that there is a universal alternating Turing machine which makes the same
sequence of alternations as the machine it is simulating.

By changing the resource bounds on alternation bounded machines, we get other
hierarchies. For example, the logspace hierarchy defined by

ALl l°g = (L(M) IM is a Xk-machine which accepts in space logn),
AII t°g = {L(M) I M is a IIk-machine which accepts in space logn},

is analogous to the polynomial-time hierarchy in many ways. Some of its properties
are listed below:

A 1-tlog . (l) A X £ °g U A H £ °g _c A X i a l 1"1 . '~ , tk+l ,

(2) AZ~ °g _C PTIME (since PTIME = ALOGSPACE);
(3) Sl °g (respectively, plog,k) = {MSx$'~[M is a Xk- (respectively, Ilk-) machine

which accepts x in space log(s)) is complete for AZ~ °g (respectively, AH~°g);
and

(4) Ok~S~ °g is complete for PTIME (in the same way that Ok>0S~ is complete for
PSPACE).

The following theorem uses the result of Savitch [20] that NSPACE(S(n)) _C
DSPACE(S(n) 2) and may be viewed as a strengthening of that result.

THEOREM 4.2. (A. BORODIN [3]). I f M is S(n)-space bounded and A(n)-alternation
bounded with S(n) _> logn, then M can be simulated by a deterministic machine N of
space complexity A (n)S(n) + S(n) 2.

PROOF. Assume first that S(n) is tape-constructible. We outline a recursive
procedure MAIN for determining whether M accepts x. The procedure uses S(n) 2
global storage, plus S(n) local storage for each instantiation, but the depth of
recursion is limited to A(n). Thus if the procedure is implemented on a Turing
machine in the obvious way, that is, with a stack to preserve local storage across a
call, then at most A(n)S(n) space is needed for the local storage.

MAIN takes one input parameter, a configuration a of M with space(a) _< S(n),
and it returns the value of 13(a), where

C = {/3]space(fi) _< S(n)}.

Thus to check whether M accepts x, N calls MAIN with parameter OM(X) and accepts
iff I~(OM(X)) ---- I.

First we describe a subroutine PATH which takes two parameters a, 13, both
configurations of M. If a is universal (respectively, existential), PATH determines
whether there is a computation path from a to /3 such that all configurations
appearing on the path (with the possible exception of fl) are universal (respectively,
existential) and lie in C. This can be done nondeterministically in space S(n)just by
guessing the path. By the above-mentioned result of Savitch, it can be done deter-
ministically in space S(n) 2. PATH uses the S(n) 2 global storage for this purpose.

Now we describe the action of MAIN on input a. If a is an accepting or rejecting
configuration or not in c, the procedure returns immediately with I, 0, or ±,
respectively. If a is an existential configuration, a E C, note that

z~,(a) = v l~(/~),

where the disjunction is taken over the set (i l ia ~-* fi in such a way that all
configurations along the path are existential and in C, and fi is not existential}.
MAIN now writes down each nonexistential/3 in C successively and calls PATH to

Alternation

check whether a t -*/3 througl
recursively with parameter/3 t(
returns the value ±.

Similarly, if a is universal, c

where the conjunction is tak
configurations in C, and/3 is
down all nonuniversal /3, sp
a F-* 13 through only universal
parameter /3 to determine l~
no computation path out ot
only universal configuratiom
through only universal confil
PATH(/3,/3) for all universal
space S(n) + 1.

The depth of recursion i~
corresponds to another altern
tiation of MAIN, then only a

The case of S(n) not tape-c
That is, machine N successiv
verify that l~(o~(x)) = 1, wh,

The following corollary gei
to the case k = 1.

COROLLARY 4.3. For an)
machine which accepts in spat

Another corollary is th
DSPACE((Iog n)Z). This is]
bound on the number of alte

COROLLARY 4.4. Ok_>0 X~

5. Alternation in Other Autor

5.1 ALTERNATING FINITE~

finite automaton can be simt
18] and that 2 k states are nec
automata and show that tM
sufficient in general to simu
cally, and there are cases for

Definition 5.1. An altern,

where

Q is a finite set of states {
is a finite input alphabe

ql E Q is the start state,
F C_ Q are the final states,
g : O --" (Z × B k ~ B),

where B denotes the set {0,

Alternation 127

check whether a ~* fl through only existential configurations, and if so, calls itself
recursively with parameter fl to determine l~(fl). If no such fl exists, then MAIN just
returns the value ±.

Similarly, if a is universal, a E C, then

l ~ (a) = A l~(/~) ,

where the conjunction is taken over the set { i l ia)-* fl through only universal
configurations in C, and fl is not universal}. In this case MAIN successively writes
down all nonuniversal fl, space(fl) _< S(n), and calls PATH to check whether
a)-* fl through only universal configurations in C; if so, it calls itself recursively with
parameter fl to determine l~(fl). For universal a, MAIN must also check that
no computation path out of a either (i) loops infinitely on S(n) tape through
only universal configurations, or (ii) reaches a configuration of space S(n) + 1
through only universal configurations. It does this by (i) calfing PATH(a, fl) and
PATH(fl, fl) for all universal fl of space S(n); (ii) calling PATH(a, fl) for all 13 of
space S(n) + 1.

The depth of recursion is at most A(n), since each recursive call of MAIN
corresponds to another alternation, and if a is the parameter to a particular instan-
tiation of MAIN, then only a need be preserved across recursive calls.

The case of S(n) not tape-constructible is handled as in the proof of Theorem 3.2.
That is, machine N successively iterates s = 1, 2, . . . , and for each value s tries to
verify that I~(OM(X)) = 1, where C = {fllspace(fl) _< s}. []

The following corollary generalizes the result of Savitch [20]; his result corresponds
to the case k = I.

COROLLARY 4.3. For any k, if M is a k-alternation bounded alternating Turing
machine which accepts in space S(n) >_ logn, then L(M) E DSPACE(S(n)2).

Another corollary is that the entire logspace hierarchy is contained in
DSPACE((Iog n)2). This is perhaps surprising, in view of the fact that when the
bound on the number of alternations is removed the resulting class is PTIME.

COROLLARY 4.4. Uk_~o E~ °g C DSPACE((Iogn)2).

5. Alternation in Other Automata

5.1 ALTERNATING FINITE AUTOMATA. It is known that a k-state nondeterministic
finite automaton can be simulated with a 2k-state deterministic finite automaton [10,
18] and that 2 k states are necessary in certain cases [16]. We define alternating finite
automata and show that they accept only regular sets. Furthermore, 22~ states are
sufficient in general to simulate a k-state alternating finite automaton deterministi-
cally, and there are cases for which 22. states are necessary.

Definition 5. I. An alternating finite automaton is a five-tuple,

P = (Q, E, ql, F, g),
where

Q is a finite set of s ta tes {q l qk },
E is a finite input alphabet,
ql E Q is the start state,
F C_ Q are the final states, and
g:Q--> (E × Bk ---> B),

where B denotes the set {0, 1}.

128 A . K . CHANDRA, D. C. KOZEN, AND L. J. STOCKMEYER

The function g associates with each state qi a Boolean valued function g(qi) , or gi
for short,

gi : ~ × B k ---~ B.

One can think o f gi as a function which, given some input symbol and a Boolean
value associated with each of the k states, computes a new Boolean value to be
associated with the state qi.

Let u denote a k-tuple o f Boolean values (ul, u2, . . . , uk). Let ~ri be the ith
projection, ~ri(u) = ui.

Let f denote the characteristic vector o f F, that is,

1 if q i @ F ,
~i (f) = 0 i f qi 6fi F.

D e f i n e Hi : ~ * ~ (B k ~ B), 1 _< i _< k, inductively as follows:

H i (A) = 'rri,

H i (a x) (u) = gi(a, Hffx)(u) Hk(x)(u)),

where a ~ E, x E Z*, and A @ Z* is the null string.
H i (x) (f) is meant to correspond to the l*(a) o f the previous sections. That is,

Hi(A)(f) = 1 iff qi is a final state, and if a x is the input remaining, a process in
state qi scans a and splits into k independent parallel processes which run to com-
pletion, determining the values o f H j (x) (f) , 1 _< j _< k; then gi(a, .) is applied to
these values to get H i (a x) (f) . The following definition is then the natural analog of
I*(OM(X)) = 1.

Def ini t ion 5.2 P accepts x i f fH l (x) (f) = 1.

The Hi are defined recursively "inside out." For technical reasons we wish to
define a similar function "outside in." Let Gi : Z* ~ (B k ~ B), 1 _< i _< k, be defined
by

Gi(A) = ~ri,
Gi(xa) (u) = Gi (x) (g l (a , u), . . . , gk(a, u)).

LEMMA 5.1. Gi = Hi, 1 _< i_< k.

PROOF. By definition we have that Gi(A) = Hi(A) = ~ri, and for all x, y E Z*,
a E Z, u ~ B k,

G i (x a) (H l (y) (u) , Hk (y)(u))
= Gi(x) (g l (a , H~(y) (u) , H~(y) (u)) , . . . , gk(a, H~(y)(u) , . . . , Hk (y) (u)))
= Gi(x) (H~(ay) (u) Ha (ay)(u)). (1)

But for any x E Z*, u E B k,

Gi(x) (u) = Gi (x) (Hl (A) (u) , . . . , Hk(A)(u)),

and applying (1) I x l times we get

Gi(x) (u) = Gi (A) (Hl (x) (u) , . . . , Hk(x)(u))
= 7r i(Hl(x)(u) , . . . , Hk(x)(u))
= Hi (x) (u) . []

THEOREM 5.2 A n y al ternat ing f i n i t e au tomaton P accepts a regular set; moreover ,
i f P has k states, then there is a determinis t ic f i n i t e au tomaton equivalent to P with at
mos t 2 2~ states.

Alternation 129

PROOF. Let L (P) denote the set o f strings accepted by P. Define x = y iff
G~(x) = G~(y). Then ~ is an equivalence relation " 2* • o f index at most 2 , since there are
2 2* functions B k ---) B. Also, -~ is right invariant, since G~(x) = G~(y) implies

Gl(xa)(u) = Gl(x)(gl(a, u) gk(a, u))
= Ga(y)(gl(a, u) gk(a, u))
= G~(ya)(u).

It is immediate f rom the definition o f acceptance and L e m m a 5.1 that L (P) is a
union o f =-classes, so the states o f the deterministic au toma ton can be the = -
classes. []

The next theorem shows that the state bound 2 2* cannot be improved in general.

THEOREM 5.3 For each k >_ 1, there is a k-state alternating f inite automaton with
a three-letter input alphabet such that the smallest deterministic f ini te automaton
accepting the same set has 2 2* states.

PROOF. Let Z = {a, b, c}. We construct

e = (Q, Z, qx, F, g)

with k states and arbi t rary F. Define, for 1 _< i _< k,

gi(a, u) = 7ri((u - I) mod 2k),

where here and subsequently, a Boolean k-tuple (Ul us) denotes that integer
between 0 and 2 k - 1 whose k-digit b inary representat ion is u~u2 . . . us. Note that

(g~(a, u) gk(a, u)) = (u - 1) rood 24. (2)

Let - be the equivalence relation defined by

x ~ y iff (Vw)[xw E L (P) i f f y w E L(P)] .

Then the - -c lasses give the minimal deterministic finite au toma ton accepting the
same set as P, so x ~ y implies x - y for any x, y ~ Z*. We claim that the action o f
gi on a forces the converse, that is, x - y implies x = y. To see this, assume x - y, let
u be arbitrary, and let v = (f - u) mod 24. Then

Ga(xa*)(f) = Ga(xa*-~)(g~(a, f) gk(a, f))
= Gl(xa~-l)((f -- 1) rood 2 4)

= G f f x) ((f - v) mod 2 4)
= G~(x)(u),

and similarly, Gl(yaV)(f) = G~(y)(u). Since xa v ~ L (P) i f f y a ~ ~ L(P), we have
G~(x)(u) = Gl(y)(u). Since u was arbitrary, we have x = y.

It remains to construct the rest o f g so that all potential =-classes are nonempty ;
that is, for each Boolean function h : B k ---) B there is an input x ~ E* such that
G~(x) = h. Then the minimal automaton, given by the =-classes, will have2 2. states.

Let

g,(b, u) = gi(c, u) = ~ri(u)
g~(b, O) = gl(c, O) = 1,
gl(b, 2 k-l) = !,

gdc, 2 k-~) = 0.

if i # 1 or u # 0 m o d 2 k-~,

130 A . K . C H A N D R A , D. C. K O Z E N , A N D L. J. STOCKMEYER

Thus ,

u i f u ~ O ,
(g~(b, u) g k (b , u)) = 2+_~ if u = O. (3)

u i f u ~ O m o d 2 +-1 ,

(g l (c , u) , . . . , g+(c, u)) = 2 k-1 if u = O,
0 i f u = 2 k-~.

(4)

F o r 2 +-1 _< v < 2 k, let

a if h (v) = 1,
X v --~

ac if h(v) = 0,

a n d for 0 _< u < 2 k-l, let

a if h(u) # h(u + 2k-1),
x u = ab if h (u) = h (u + 2 k - 1) .

Let n = 2 ~ - 1, a n d let x = XnXn-~" • "XlXo.

W e cla im that G~(x) = h. First we note that for v ~ 0 m o d 2 k-1 and any y, u,

G~Cyx ,) (v) = G~CY)C(v - l) m o d 2+). (5:

This is because xu is one o f a, ab , ac, a n d

G l (y a b) (v) = G l (y a) (g l (b , v), . . . , g k (b , v))
= G~(ya) (v) by (3)
= Gl (y) ((v - 1) m o d 2 k) by (2).

Similar ly,

G l (y a c) (v) = G ~ (y a) (v) = Gl(y)((v - 1) m o d 2~).

Let 0 <_ u < 2 k-I and v = u + 2 k-1. T h e n

Gi(x)(u) = Gl(Xn . . . Xv " ' " x u " " xlx0)(u)

= Gl (xn . . . Xv " ' " xu)(0)

= ~ G l (x n . . . X v . . . X u + l) (2 + - 1) i f h(u) ~ h(v)
[G i (x , , x v " " Xu+l)(2 + - 1 - 1) i f h (u) = h(v)

= ~ G d x n " ' " Xv)(2 k-l) i f h(u) ~ h(v)
(G l (x n Xv)(0) i f h(u) = h(v)

[Gl(xn . . . Xv+0(2 +-1 - 1) i f h(u) ~ h(v)
Gl(Xn xv+l)(2 + - 1) i f h(u) ~ h(v)

= Gl (xn Xv+l)(2 + - 1) if h(u) = h(v)
Gl(Xn Xv+l)(2 +-1 -- 1) if h(u) = h(v)

[G l (X n . . . Xv+l)(2 + - 1)
= [C~(x,, Xv+l)(2 +-1 - l)

= ~ Gff)t)(v)
[G~(~,)(u)

= h (u)

if h (u) = 1
if h(u) = 0

if h (u) = 1
if h(u) = 0

by (5)

by (3) a n d (21

by (5) a n d (21
a n d h(v) = 1
and h(v) = 0
and h(v) = 1
and h(v) = 0

by (4) and (21

by (5)

A lternation

Similarly,

G~(x)(v) = G l (x , , . . . x , , . . . x , , . . . Xo)(V)
= Gl(xn . . " x v . . . xu)(2 k-l)

-- GI(x,, . . "xv . . . xu÷l)(2 *-1 - 1)
= G ~ (x , . . . x , ,) (0)

[G l (x , , . . . xv+0(2 k - 1) if
= [G ~ (x , Xv+l)(2 k - l - 1) if

= ~ G~(A)(v) if
[G~(A)(u) if

= h (v) .

This completes the proof. []

It is interesting that the reverse of any L (P) ,

(L (P)) a = { x R I x E L (P) } ,

131

h (v) = l

h (v) -- 0

by (5)
by (3) and (2)
by (5)

h (v) = 1
h (v) = 0 by (5)

where x r~ is x written backward, can be accepted deterministically with only 2* states,
by taking

x = fl iff H,(x)(f) = H,(y)(f), 1 ___ i _< k.

5.2 ALTERNATING PUSHDOWN AUTOMATA. We now turn to pushdown automata
and show that for these devices alternation does enlarge the class of accepted
languages. An alternating PDA is similar to a nondeterministic PDA (see [10,
Ch. 5]) except that there is a function mapping states to (A, V, accept, reject} and
the input is supplied with a fight endmarker which can be sensed by the machine;
the input head is one-way. A conf igurat ion of an alternating PDA consists of the
state, the input word, the position of the input head, and the contents of the pushdown
store. The definition of acceptance for alternating PDAs follows the definition given
in Section 2 for ATMs simply by replacing ATM configurations by PDA configu-
rations in the definition. Let ALT-PDA denote the class of languages accepted by
alternating PDAs.

THEOREM 5.4. t.Je>O D T I M E (c ") C_ A L T - P D A .

PROOF. By Theorem 3.4 it suffices to prove that

ASPACE(n) C ALT-PDA.

Let M be an ATM which accepts in space n. We first modify M so that M has only
one tape which is one-way infinite to the right, M has no negating states, and, when
given an input of length n, at most n + 1 tape squares are visited along any
computation path (cf. Theorems 2.5 and 2.6). It is also convenient to assume that the
transition relation is given by a partial function

~:Q x r---~ (Q x I ~ x {left, right}) 2,

where Q is the set of states and I ~ is the tape alphabet; that is, when in a non final
state q scanning the symbol y, M has exactly two moves described by the two
components of 8(q, y). As in the proof of Theorem 3.4, a conf igurat ion of M is viewed
as a word ~qv where #v E 1"*, [#v[= n + 1, and q E Q. The initial configuration on
input x is q o x # . For configurations a and fl write a I-1 fl (a I---2 fl) i f f a can reach fl
in one step according to the first (second) component of & The alternating PDA M'
which simulates M will "choose" a computation path of M and push it onto the

132 A. K. CHANDRA, D. C. KOZEN, AND L. J. STOCKMEYER

pushdown store. The path is represented by a string of the form

a r m a a 0 0Ogl mto~2 • • • ,

where ao, al, a2 are configurations of M (a R denotes the reverse of a), mi E
(1, 2} for i _> 0 (we assume 1, 2, ~ Q u F), a0 = q o x # , and ai I--m, ai+~ for i _> 0. The
symbol mi is chosen by a universal (existential) branch of M' if a~ is a universal
(existential) configuration of M. The strings ag are chosen by existential branching.
Each time the guess of some a l l is terminated, M ' enters a universal state to choose
one of three further actions. One action is to continue choosing the computation
path; another action is tocheck that a~+l is the correct length n + 2; and another is
to check that a, ~-m, a~+l. This latter check is, in essence, that of checking that two
words match position by position, where "position" is actually a block of four
symbols and "match" means match according to the transition function of M and
the value of mi. The matching is facilitated by universal branching, that is, by
universally choosing a position in a,+l to make the match, and the input head of M'
is used to measure the distance (roughly) n between the chosen block of a,+~ and the
corresponding block of ag.

Notice that the alternation of M' is used in two ways. First, in choosing the mi it
is used to simulate the alternation of M. Second, universal branching is used to
perform several actions in parallel, such as checking that two configurations match
in all positions. We now describe the procedures of M' more carefully. The and's

(A) and or's (V) in these procedures are implemented using alternation. For example,
A A B means to enter a universal state to choose which one of A or B to perform.

NEW: Using existential branching, push some word in F*. Q. F* onto the pushdown store; at
the point where the state symbol is guessed, remember in the finite-state control
whether it is accepting, rejecting, universal, or existential. If this is the first invocation
of NEW, then call INIT-TOP; otherwise, call TOP.

INIT-TOP: CONTINUE A INIT.
TOP: CONTINUE A LENGTH A MATCH.
CONTINUE: If the top configuration is accepting, then accept.

If the top configuration is rejecting, then reject.
If the top configuration is universal, then (push 1 A push 2), and then call NEW.
If the top configuration is existential, then (push" 1 V push 2), and then call NEW.

INIT: Check that (qox#) a is written on the pushdown store and accept or reject accordingly;
this is done by popping the store while comparing it with the input.

LENGTH: Using the input head to count up to n, check that the top of the store contains a string
of n + 2 symbols in (Q u F)* followed by a symbol in { 1, 2}, and accept or reject
accordingly.

MATCH: Using universal branching, choose a position in the top configuration to match against
the corresponding position in the next-to-top configuration. The distance (roughly) n
between the two positions is measured by using the input head of M ' as discussed
above. If the two positions match, then accept; otherwise reject.

We let reader verify that these procedures correctly simulate M and that they can be
implemented on an alternating PDA. Since the input head of M' is one-way, it is
important to note that the input is read only once along any computation path
of M'. []

In fact

U DTIME(c") = ALT-PDA.
c > 0

As part of their study of alternating auxiliary ptashdown automata, Ladner, Lipton,
and Stockmeyer [15] prove that ALT-PDA C Uc>0 DTIME(c"); moreover, this is
true if the alternating PDA has a two-way input head.

A lternation 133

REFERENCES

1. AHO, A.V., HOPCROFT, J.E., AND ULLMAN, J.D. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass., 1974.

2. HERMAN, L. Precise bounds for Presburger arithmetic and the reals with addition. Proc. 18th IEEE
Symp. on Foundations of Computer Science, Providence, R.I., 1977, pp. 95-99.

3. BORODIN, A. Personal communication.
4. CHANDRA, A.K., AND STOCKMEYER, L.J. Alternation. Proc. 17th 1EEE Symp. on Foundations of

Computer Science, Houston, Texas, 1976, pp. 98-108.
5. COOK, S.A. The complexity of theorem proving procedures. Proc. 3rd ACM Symp. on Theory of

Computing, Shaker Heights, Ohio, 1971, pp. 151-158.
6. FISCHER, M.J., AND LADNER, R.E. Propositional dynamic logic of regular programs. J. Comput. Syst.

Sci. 18, 2 (1979), 194-211.

7. GOLDSCHLAGER, L.M. A unified approach to models of synchronous parallel machines. Proc. 10th
ACM Symp. on Theory of Computing, San Diego, Calif. 1978, pp. 89-94.

8. HARTMANIS, J., AND HUNT, H.B. III. The LBA problem and its importance in the theory of
computing. In Complexity of Computation, R.M. Karp, Ed., American Mathematical Society, Prov-
idence, R.I., 1974, pp. 1-26.

9. HARTMANIS, J., AND SIMON, J. On the power of multiplication in random access machines. Proc.
15th IEEE Symp. on Switching and Automata Theory, New Orleans, La., 1974, pp. 13-23.

I0. HOPCROFT, J.E., AND ULLMAN, J.D. Formal Languages and their Relation to Automata. Addison-
Wesley, Reading, Mass., 1969.

I 1. KARP, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, Eds., Plenum Press, New York, 1972, pp. 85-104.

12. KASA'I, T., ADACHI, A., AND 1WATA, S. Classes of pebble games and complete problems. SIAM J.
Comput. 8 (1979), 574-586.

13. KOZEN, D. On parallelism in Turing machines. Proc. 17th IEEE Symp. on Foundations of Computer
Science, Houston, Texas, 1976, pp. 89-97.

14. KOZEN, D. Complexity of Boolean algebras. Theoret. Comput. ScL I0 (1980), 221-247.
15. LADNER, R.E., LIPTON, R.J., AND STOCKMEYER, L.J. Alternating pushdown automata. Proc. 19th

1EEE Symp. on Foundations of Computer Science, Ann Arbor, Mich., 1978.
16. MEYER, A.R., AND FISCHER, M.J. Economy of description of automata, grammars, and formal

systems. Proc. 12th IEEE Symp. on Switching and Automata Theory, East Lansing, Mich., 1971, pp.
188-191.

17. PRATT, V.R., AND STOCKMEYER, L.J. A characterization of the power of vector machines. J. Comput.
Syst. ScL 12 (1976), 198-221.

18. RABIN, M.O., AND SCOTT, D. Finite automata and their decision problems. IBM J. Res. Dev. 3
(1959), 115-125.

19. Rozzo, W.L. General context-free language recognition. Ph.D. Diss., Computer Science Division,
Univ. of California, Berkeley, Calif., 1978.

20. SAVITCH, W.J. Relationships between nondeterministic and deterministic tape complexities. J.
Comput. Syst. Sci 4 (1970), 177-192.

21. SAVITCH, W.J., AND STIMSON, M.J. The complexity of time bounded recursive computations. Proc.
1976 Johns Hopkins Conf. on Information Sciences and Systems, Baltimore, Md., pp. 42-46.

22. SCOTT, D. Outline of a mathematical theory of computation. Proc. 4th Ann. Princeton Conf. on
Information Sciences and Systems, Princeton, N. J. 1970, pp. 169-176.

23. SIMON, J. On feasible numbers. Proc. 9th ACM Symp. on Theory of Computing, Boulder, Colo.,
1977, pp. 195-207.

24. STOCKMEYER, L.J. The polynomial-time hierarchy. Theoret. Comput. ScL 3 (1977), 1-22.
25. STOCKMEYER, L.J., AND CHANDRA, A.K. Provably difficult combinatorial games. SIAM J. Comput.

8 (1979), 151-174.

26. STOCKMEYER, L.J., AND MEYER, A.R. Word problems requiring exponentialtime: Preliminary report.
Proc. 5th ACM Symp. on Theory of Computing, Austin, Texas, 1973, pp. 1-9.

27. WRATHALL, C. Complete sets and the polynomial-time hierarchy. Theoret. Comput. ScL 3 (1977),
23-34.

RECEIVED JANUARY 1979; REVISED JANUARY 1980; ACCEPTED FEBRUARY 1980

Journal of the Association for Computing Machinery. Vol. 28. No. I. January 1981.

