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ABSTRACT. Alternation is a generalization of nondeterminism in which existential and universal quanti- 
tiers can alternate during the course of a computation, whereas in a nondeterministic computation there 
are only existential quantifiers. Alternating Turing machines are defined and shown to accept precisely 
the recursively enumerable sets. Complexity classes of languages accepted by time- (space-) bounded 
alternating Turing machines are characterized in terms of complexity classes of languages accepted by 
space- (time-) bounded deterministic Turing machines. In particular, alternating polynomial time is 
equivalent to deterministic polynomial space and alternating polynomial space is equivalent to determin- 
istic 'exponential time. Subrecursive quantifier hierarchies are defined in terms of time- or space-bounded 
alternating Tufing machines by bounding the number of alternations allowed during computations. 
Alternating finite-state automata are defined and shown to accept only regular languages, although, in 
general, 2 2 states are necessary and sufficient to simulate a k-state alternating finite automaton determin- 
istically. Finally, it is shown that alternating pushdown automata are strictly more powerful than 
nondeterministic pushdown automata. 
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1. Introduction 

The concept  o f  nondeterminism has played a number  o f  impor tant  roles in the theory 
o f  computat ion.  For  example, in formal  language theory, certain classes o f  languages 
have been characterized in terms o f  acceptance by  nondeterminist ic  au tomata  [10]; 
in complexity theory, nondeterminism has provided the basis for the important 
not ion o f  NP-completeness  [1, 5, 11]. The purpose o f  this paper  is to describe and 
investigate a generalization o f  nondeterminism which we call alternation. 

In the case o f  nondeterminist ic machines, for example, nondeterminist ic  Turing 
acceptors [10], the transition rules allow a single machine configurat ion a to reach 
several configurat ions ill, • • •, flk in one step; by definition, the configurat ion a leads 
to acceptance if  and only if  there exists a successor fli which leads to acceptance. In 
addit ion to these "existential branches,"  an alternating Tur ing machine  can also 
make  "universal  branches"  and "negat ing moves."  In  a universal branch, a config- 
urat ion a can again reach several configurat ions ill, . . . ,  flk in one step, but now a 
leads to acceptance if  and only if  all successors fll . . . .  , flk lead to acceptance. In a 
negating move, a configurat ion a has only one successor fl, and a leads to acceptance 
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iff/3 leads to rejection. A foimalization of this idea yields the definition of  the 
alternating Turing machine (ATM), given in Section 2. Because of the possibility of 
nonterminating computation paths, the formal definition of acceptance for ATMs is 
slightly more involved than the informal definition outlined above. The basic 
definition is similar to least-fixed-point definitions of recursion [22], but it is shown 
that, viewing the computation of an ATM as a tree, acceptance could be defined 
equivalently as the existence of  a finite accepting subtree. It is then immediate that 
ATMs accept precisely the recursively enumerable sets. We also define time and 
space complexity for ATMs and show that negating moves can be eliminated with 
no loss of efficiency--hence the term alternation referring to the alternation of  
universal and existential branches. 

In Section 3 we characterize the complexity classes of languages accepted by time- 
(space-) bounded alternating Turing machines in terms of complexity classes of 
languages accepted by space- (time-) bounded deterministic Turing machines. It is 
shown that alternating time and deterministic space are equivalent to within a 
squaring of the resource bound, and that alternating space S(n) is equivalent to (the 
union over constants c > 0 of) deterministic time e s~"~. Thus the deterministic 
complexity hierarchy 

LOGSPACE _ PTIME _ PSPACE __. EXPTIME __. EXPSPACE _.C . . .  

shifts by exactly one level when alternation is introduced. 
In Section 4 we consider ATMs with the restriction that the number of alternations 

(of blocks of existential branches with blocks of universal branches) is bounded, and 
we discuss the relationship between these devices and subrecursive quantifier hier- 
archies such as the polynomial-time hierarchy [24]. The "zero-degree" of the poly- 
nomial-time hierarchy is deterministic polynomial time. The concept of  bounded 
alternation facilitates natural definitions of  quantifier hierarchies based on other 
zero-degrees, such as logarithmic space or exponential time. We also give a general- 
ization of a result of Savitch [20] that nondeterministic space S(n) is contained in 
deterministic space S(n)2; namely, the bounded quantifier hierarchy based on space 
S(n) is entirely contained in deterministic space S(n) 2. 

Alternation can be applied to classes of automata other than Turing machines. In 
Section 5 we investigate the power of alternating finite automata and alternating 
pushdown automata. We show that although alternating finite automata accept only 
regular languages, in general 2 z' states are necessary and sufficient to simulate a k- 
state alternating finite automaton deterministically. Finally, we show that any 
language which can be accepted by a deterministic Turing machine in time c" for 
some constant e can also be accepted by some alternating pushdown automaton; 
therefore, alternating pushdown automata are strictly more powerful than nondeter- 
ministic pushdown automata. 

Although the ultimate usefulness of alternation remains to be seen, several appli- 
cations of alternation have already been made. One goal of complexity theory is to 
classify the computational difficulty of problems, either by establishing explicit upper 
and lower bounds on the time or space required to solve the problem or by showing 
that the problem is complete in some complexity class (see, e.g., [1, 11, 24, 26, 27]). If  
the problem of interest intrinsically involves alternating quantifiers, it may be easier 
to classify the problem in terms of time- or space-bounded alternating machines and 
then, using the characterizations of Section 3, translate the classification to one in 
terms of deterministic machines. Two types of problems which involve quantifiers 
are decision problems in logic and problems concerning the existence of  winning 
strategies in combinatorial games. By exploiting the equivalence between alternating 
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linear space and deterministic exponential time, Fischer and Ladner [6] prove that 
the validity problem for propositional dynamic logic requires exponential time to 
solve. For certain two-person combinatorial games, Stockmeyer and Chandra [25] 
and Kasai, Adachi, and Iwata [12] show that it requires exponential time to determine 
which player has a winning strategy. By employing alternating Turing machines, 
Berman [2] classifies precisely the decision problems for the first-order theories of 
real addition and integer addition, and Kozen [ 14] classifies the elementary theory of 
Boolean algebras. Ruzzo [19] has shown that the class of  languages reducible to 
context-free languages in logspace can be characterized by a class of alternating 
Turing machines. 

An alternating machine can also be viewed as a machine with (unbounded) 
parallelism in which processes communicate only with their parent or offspring. 
When in a configuration a with several successors fll . . . .  , ilk, the machine spawns k 
independent offspring which run to completion, report acceptance or rejection back 
to their parent a, and then die. The parent a combines the answers in a simple way 
(by ANDing the answers if a is universal or by ORing the answers if a is existential), 
the resulting answer is passed up to a's parent, and so on. Investigation of  the power 
of a variety of parallel machine models [4, 7, 9, 17, 21, 23] has led to the formulation 
of a "parallel computation thesis" [4, 7], which states that time on a parallel machine 
is polynomially related to space on a serial (Turing) machine. Since one of the 
characterizations of Section 3 says that alternating time and deterministic space are 
polynomially related, one implication of this thesis is that an alternating Tunng 
machine is, to within a polynomial, among the most powerful types of parallel 
machines. 

To conclude, the notion of alternation impacts several topics in computer science, 
including time and space complexity, logic, games, and parallelism. Alternation leads 
to succinct representations in certain instances such as finite automata, and it adds 
power in others such as pushdown automata. Certain problems seem more convenient 
to program using the construct of alternation, but we do not know whether alternation 
will find its way into programming languages or have a role to play in structured 
programming. Such questions present themselves for further research. 

2. Alternating Turing Machines 

An alternating Turing machine is like a nondeterministic Turing machine [cf. 10] 
with the addition of a function associating one of  the three Boolean functions A 
(and), V (or), and 7 (not) with each non final state. 

Definition 2.1. An alternating Turing machine (ATM) is a seven-tuple 

M = ( k , Q , ~ , r , & q o ,  g), 
where 

k is the number of work tapes, 
Q is a t'mite set of  states, 

is a t'mite input alphabet (~ fE~ is an endmarker), 
r is a f'mite work tape alphabet (# E F is the blank symbol), 
6 _C (Q x I ~ × (~ tA {~b})) × (Q x (F - {#})k X (left, right} k+l) is the next move 
relation, 
qo E Q is the initial state, 
g: Q ~ {A, V, 7,  accept, reject}. 

If  g(q) = A (respectively, V, --7, accept, reject), then q is said to be a universal 
(respectively, existential, negating, accepting, rejecting) state. 
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The machine has a read-only input tape with endmarkers and k work tapes, 
initially blank. A step of M consists of reading one symbol from each tape, writing a 
symbol on each of the work tapes, moving each of the heads left or right one tape 
cell, and entering a new state, in accordance with the transition relation & Note that 
the machine cannot write the blank symbol. 

Definition 2.2. A configuration of an alternating Turing machine M is an element 
of 

CM = Q x ~* x ( ( r  - {#)).)k × Nk+l 

representing the state of the finite control, the input, the nonblank contents of the k 
work tapes, and k + 1 head positions; see, for example, [10]. If  q is the state associated 
with configuration a, then a is said to be a universal (respectively, existential, negating, 
accepting, rejecting) configuration if q is a universal (respectively, existential, negating, 
accepting, rejecting) state. The initial configuration of  M on input x is 

OM(X) = (qo, x, ~ . . . . .  )~, O, . . . ,  0), 

k-~l 
where ~ is the null string. 

A configuration represents an instantaneous description of M at some point in a 
computation. 

Definition 2.3. Given M, we write a t- fl and say /3 is a successor of a if 
configuration/3 follows from configuration a in one step, according to the transition 
rules ~. The relation ~ is not necessarily single valued, since 8 is not. We do, however, 
require that 8 is such that accepting and rejecting configurations have no successors, 
universal and existential configurations have at least one, and negating configurations 
have exactly one. The reflexive transitive closure of k- is denoted t-*. 

A computation path of M on x is a sequence a0 ~ o£1 ~ " ° • ~ O L n ,  where a0 = aM(X). 

We wish to define acceptance for such machines in a way which will capture the 
following idea. A single process is started in the initial configuration OM(X). Subse- 
quently, if a process is in an existential configuration a, and/31 . . . . .  /3m are all the 
configurations following from a in one step, then the process spawns m distinct 
offspring processes which concurrently try to determine whether any of the/3i lead 
to acceptance. Some of the offspring computations may be infinite, but if at least one 
is accepting, this information is reported back to the parent process waiting at a, and 
it in turn reports back to its parent process that a leads to acceptance. If  a process is 
in a universal configuration, it must determine whether all its offspring lead to 
acceptance. If  a process is in a negating configuration, it must determine whether its 
unique offspring leads to rejection. A process in an accepting (rejecting) configuration 
just reports success (failure) to its parent. 

We could formalize this idea in terms of a recursive procedure for labeling 
configurations as 1 (leading to acceptance) or 0 (leading to rejection) and say M 
accepts x iff the start configuration is ever labeled 1. The recursive procedure would 
be 

{ A f ( f l )  if a is universal, 

V f ( f l )  if  a is existential, 

j((a) = ~f(fl) where a t- fl, if a 
1 if a is accepting, 
0 if a is rejecting. 

is negating, 
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However, the usual semantics will not suffice, since we wish to allow a process to 
return to its parent in cases where, although some offspring have not returned, it has 
enough information to determine what its labeling must be. For example, if a t-  fl, 
o~ t-- y, ot is universal, andf(f l )  = O, then we want f (a )  = O, regardless of  whether y is 
ever labeled. In order to accomplish this, we extend the definition of  the Boolean 
operations A, V, ~ to domain {0, ±, 1) according to the following tables: 

A: 1 .J_ 0 V: 1 .1_ 0 ~: 
1 1 J- 0 '111 1 [ ~ ]  

i ± ±i0 l /±  ± 
0 0 0 0 .~1[_1_ 0 

Thus V gives least upper bound in the ordering 0 < ± < 1, and A gives greatest 
lower bound. Note that V and A are associative. Intuitively, ± represents an 
incomplete computation; for example, note that 0 A _J_ = O, as desired. 

Let M be an alternating Turing machine, and let X E X* be an input. A labeling 
of configurations is a map 

l:CM---~ (0,  ± ,  1}. 

Let ~- be the operator mapping labelings to labelings defined as follows: 

I A l(fl) if a is universal, 

V l(fl) if a is existential, 
*(l)(a) = ~ #  

-~l(fl) if a is negating and (~ F- fl, 
1 if c~ is accepting, 
0 if a is rejecting. 

Let -m be the partial ordering on labelings defined by extending the ordering 

0 1 
\ /  

± 

coordinatewise to functions from CM to (0, L, 1). It is easily checked that z is 
monotone with respect to ~; that is, if I -m l', then ~-(1) -m ~'(l'). Therefore T has a least 
fixed point 

l* = sup ~'m(~2), 
rn~N 

where the supremum is with respect to -m, where 

~'°(l) = 1, 
Tm+l(/) = ,r(,rm(l)), 

and where f~ is the _m-minimal labeling ~2(a) = ± for all a. 

Definition 2.4. M accepts x iff I*(aM(X)) = 1; M rejects x iff I*(OM(X)) = 0; M 
halts on x iff it either accepts or rejects x; and 

L(M) = {x E X* [M accepts x) .  

In the case that M has no negating states, other equivalent definitions of acceptance 
for alternating machines are given by Fischer and Ladner [6] and Ladner et al. [15]. 

We may consider a nondeterministic Turing machine to be an alternating machine 
with no universal or negating states, and a deterministic Turing machine to be a 
nondeterministic machine whose next move relation ~ is single valued. The sets 
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accepted by nondeterministic Turing machines under this definition coincide with 
those of the classical definition [10], so alternating machines accept all recursively 
enurnerable (r.e.) sets. 

We wish to show that alternating machines accept only r.e. sets. To do this, we 
show that we can restrict our attention to labelings of  finite subsets of  CM, similar to 
the labeling of  finite subtrees of  the computation tree as in [4], or limiting depth of  
recursion as in [13]. 

Let C _ CM, and let ~'c be the operator defined by 

~'( l ) (a)  if  a E  C, 
Tc( l ) (a )  = 

t L otherwise. 

Let 

l~ = sup ~'~(f~). 
r a i n  

rc is the same as ~- but ignores configurations outside C. 15 exists, since ~'c is monotone 
with respect to _,  and is the least fixed point of  rc. 

C may be, for example, the set of  configurations reachable from aM(X) in t or 
fewer steps. In this case, 1~ gives a labeling of  the computation tree truncated to 
height t in the formalism of  [4], or labelings of  configurations when depth of  recursion 
is limited to t in the formalism of  [13]. 

Note that if C is finite, then !$ is computable. We can start with the restriction of  
f~ to C and then successively apply ~'c until no more changes occur. This must happen 
within I CI steps, since ~'c is monotone. We need only look at configurations in C, 
since we know rc(  ) is always _L outside of  C. This will be the basis of  several 
simulation algorithms in later sections. 

We need to establish some elementary properties of l$. 

LEMMA 2.1. I f  C C_ D, then l~ r-_ l~ and T~(f~) ~_ ¢~(~2)for all m. 

PROOF. The proof  is by induction on m, using the monotonicity of  ~'c and 
TD. [ ]  

For a E CM and m E N define 

C(a, m) = (fl ~ CM[ a t-*fl in m or fewer steps). 

LEMMA 2.2. l~(a,m)(O 0 = Tm+l(~'~)(O/). 

PROOF. By preceding remarks, rc~,,.~ need be applied to ~2 at most m + 1 times 
before the fixed point is reached; that is, 

lS(~,m)(O0 m + l  = ~'c~o.m~(f~)(a). 

T m+l /~'~x/O/x I" By Lemma 2.1, c~o~)~ )~ ) - r'~+l(~2)(a). The intuition behind the other direction, 
~"~+~(f~)(a) ram_ r~m~(~2)(a), is that the value of  rm+l(~)(a) is not affected by the labeling 
of  configurations which cannot be reached from a within m or fewer steps. The 
formal proof, which we leave to the reader, is a straightforward induction on m. [] 

LEMMA 2.3. For every a there is a finite set C _C CM such that lc(a)* = l*(a). 

PROOF. Let f ( a )  be the least m such that Tm+l(~'~)(a) = l*(a). By Lemma 2.2, 
C(a, f (a))  is the desired finite set. [] 

THEOREM 2.4. The family of  sets accepted by alternating Turing machines is exactly 
the family of  r.e. sets. 
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PROOF. Such machines accept all r.e. sets since every nondeterministic machine 
may  be considered an alternating machine, by foregoing remarks. 

For the converse, i f M  and x are given, enumerate finite subsets C of  CM, construct 
l~, and accept if  ever I~(OM(X)) = 1. I f  such a C exists, then M accepts x by Lemma 
2. l, and if M accepts x, then such a C exists by Lemma 2.3. [] 

The definition of  time and space usage arises naturally. 

Definition 2.5. Let M be an ATM, and let s, t ~ N. M accepts x in time t if 
I~(OM(X)) = 1, where 

C = C(OM(X), t) = (fl[OM(X) F--*fl in t or fewer steps}. 

M accepts x in space s if  l~(oM(X)) = 1, where 

D = 

where space(a) is the sum of  the 
configuration a. 

Let T and S be functions from 

{a I space(a) _< s}, 

lengths of  the nonblank work-tape contents in 

N to the real numbers. M accepts in time T(n) 
(respectively, space S(n)) provided that for each x C L(M),  M accepts x in time at 
most T([ x I) (respectively, space at most S([ x I)), where I xl denotes the length of  x. 

Again, the classical definitions of  time- and space-bounded acceptance by deter- 
ministic and nondeterministic Tufing machines are equivalent to ours when we 
consider a nondeterministic machine to be an ATM with no universal or negating 
states, and a deterministic machine to be a nondeterministic machine with a single- 
valued next move relation. 

ASPACE(S(n)) (respectively, DSPACE(S(n)),  NSPACE(S(n)))  denotes the class 
of  languages accepted by alternating (respectively, deterministic, nondeterministic) 
Turing machines which accept in space S(n). The definitions of  ATIME(T(n)) ,  
DTIME(T(n)) ,  and NTIME(T(n) )  are analogous. In particular, let 

A L O G S P A C E  = ASPACE(logn),  
APTIME = 1.3 ATIME(nC), 

APSPACE = tJ ASPACE(nC), 
A E X P T I M E  = O ATIME(2nc), 

AEXPSPACE = O ASPACE(2~) ,  

where unions are over all constants c > 0. Similarly, the notations LOGSPACE,  
PTIME,  P S P A C E ,  etc., are defined with respect to deterministic complexity, and 
NLOGSPACE,  NPTIME,  etc., are defined with respect to nondeterministic com- 
plexity. 

The following theorem illustrates why we have chosen to call these automata 
alternating Turing machines. 

THEOREM 2.5. For every A T M  M there is an A T M  N such that N has no negating 
states, L ( M )  = L(N),  and fo r  all x E L ( M )  and all s, t ~_ O, i f  M accepts x in time t 
(space s), then N accepts x in time t (space s). 

PROOF. The simulating machine will remember  in its finite control the parity of 
the number  of negations that have been encountered. When the parity is odd, the 
machine will compute A instead of  V, accept instead of  reject, etc. In effect, the 
negations are pushed down to the final states by deMorgan's  laws. 

Let M be any alternating Turing machine. Let N be another machine whose finite 
control consists o f  two copies of  the finite control of  M, 

Q+ = (q÷lq  E Q} and Q -  = { q - l q  ~ Q}. 
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Q+ and Q-  will be duals. If  q E Q is a universal (existential, negating, accepting, 
rejecting) state of  M, then q+ is a universal (existential, existential, accepting, 
rejecting) state of  N, and q -  is an existential (universal, universal, rejecting, accepting) 
state of N. The transition relation 8 of  N is defined so that for any input x and 
configurations a I-- fl, if  a is not a negating configuration, then 

a + t-  fl+ and a -  ~-/3-; 

otherwise, 

a + ~ fl- and a-  F- fl+, 

where a + (respectively, a - )  is a with state q+ (respectively, q-)  substituted for state 
q. The initial state of  N is q~. 

For C C.C_ CM, let 

C' = {a +, a - l a  E C}. 

A straightforward inductive argument shows that for all m, C, and a, 

~-~ (~ ) (a )  = ~-~ , (~) (a  +) = ~ - ~ . ( ~ ) ( a - ) ;  

thus 

t ~ ( a )  * + = l c . ( a  ) = ~ l b , ( a - ) .  

Taking C = CM and noting that ON(X) = O~t(X), it follows that L(M)  = L(N).  To see 
that space is preserved, take C = {alspace(a) -- s}. To see that time is preserved, 
take C = C(oM(X), t). [] 

The following theorem states that for honest resource bounds (see [10, See. 10.6]) 
we can restrict attention to computations for which all computation paths terminate. 

THEOREM 2.6 

(a) I f  T(n) ~ n is constructible in time O(T(n)), and if  the A T M  M accepts in time 
T(n), then there is an A T M  N such that L (M)  = L(N)  and all computation paths of  N 
on any input x are of  length at most O(T(Ix D). 

(b) I f  S(n) ~ log n is constructible in space S(n), and if  the A TM M accepts in space 
S(n), then there is an A TM N such that L (M)  = L(N),  all computation paths of  N on 
an), input x are of  length at most cS(l~l) for  some constant c > O, and all configurations 
a reachable from ON(X) satisfy space(a) <_ S(I x [). 

PROOF 

(a) By Theorem 2.5 we may assume without loss of generality that M has no 
negating states. N on input x with n = I x [ will first construct T(n) on an extra tape, 
then simulate M, counting one on its extra tape for each simulated step of  M. If  the 
counter runs out before the simulation reaches a halting configuration of  M, then N 
rejects. The restriction on the length of  computation paths of  N is clearly satisfied, so 
it remains to show that L(N)  = L(M).  

After T(n) has been marked o f fand  while N is engaged in the simulation of  M, the 
configurations of  N may be represented as (a, t), where a E CM and t represents the 
time left on the counter. By the definition of  N, (a, t) F-N (fl, t -- 1) i f f a  )--Mfl and 
l*((a,  t)) = 0 for t < 0. Clearly N accepts x iffl*((OM(X), T(n))) = l, since the path 
from ON(X) to (aM(X), T(n)) is deterministic (it only involves constructing T(n)). 

Let - be the equivalence relation on (0, .1,, l} generated by 0 - .1_. Note tha t /k  
a n d V p r e s e r v e - ( i . e . , i f u -  v a n d z - w ,  t h e n u / k z - v / k w a n d u V z - v V w ) .  
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Since M has no negating states, it should be evident that 

l*((trM(X), T(n)) ) -= lCtoMtx,,rt,~,(OM(X)), 

that is, N simulates M restricted to configurations in C(OM(X), T(n)) provided that we 
view 0 and & as equivalent. But since M accepts in time T(n), it follows that M 
accepts x iff N accepts x. 

(b) Let c be a constant such that for all n, c s('~ is an upper bound on the number 
of  configurations at E CM with space(at) _< S(n). Recall that for any C C CM, l~ = 
• ~(~2) where m is the cardinality of  C. It follows that M accepts in time c s~'). 

N on input x will first construct S(n) on a tape. On one track of that tape, N 
initializes a counter to cSt"); the counter is written in c-ary notation and occupies 
space S(n). Now N simulates M using the S(n) storage on another track of  the tape. 
After each simulated step, N decrements the counter by one. If either the counter 
reaches zero or M attempts to use more than S(n) tape squares, then N rejects. The 
proof that L(N)  = L(M) is similar to part (a). [] 

3. Complexity 

In this section we study the complexity of  alternating machines and establish 
fundamental relationships between alternating and deterministic complexity. In the 
last section we defined time and space for alternating machines and showed that 
without loss of  efficiency in either time or space we could restrict our attention to 
machines with no negating states. We shall henceforth assume all machines are of 
this form. 

The following four theorems are the main results of  this section. They relate 
alternating time and space to deterministic time and space. 

THEOREM 3.1. I f  S(n) _~ n, then NSPA CE(S(n)) C Uc>o A TIME(c .  S(n)2). 

THEOREM 3.2. I f  T(n) _> n, then ATIME(T(n))  C DSP.4CE(T(n)). 

THEOREM 3.3. I f  S(n) _> log n, then .4SP.4CE(S(n)) C t.Jc>o DTIME(cS~"). 

THEOREM 3.4. I f  T(n) _> n and c > O, then 

DTIME(T(n)) C ASP.4CE(c. log T(n)). 

Theorems 3.3 and 3.4 can be combined into the following characterization. 

COROLLARY 3.5. l f  S(n) _> log n, then .4SPACE(S(n)) = U~>oDTIME(cStn)). 

The above results not only characterize the power of alternation but also reveal a 
striking relationship between Turing machine time and space. 

COROLLARY 3.6 

EXPSP.4CE = .4EXPTIME, 
E X P T I M E  = APSP.4CE, 

PSPACE = APTIME,  
P T I M E  = .4LOGSPACE. 

That is, the deterministic hierarchy 

LOGSPACE C P T I M E  C PSP.4CE C E X P T I M E  C EXPSP.4CE C . . .  

shifts by exactly one level when alternation is introduced. 

PROOF OF THEOREM 3.1. The technique is similar to Savitch's [20] for the deter- 
ministic simulation of  nondeterministic space-bounded computations. It is based on 
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~ e  fact that if M is a nondeterministic Turing machine which accepts in space S(n), 
then M accepts x iff there is a string of encodings of configurations of  M on x, each 
~of length at most S( I x D, such that the first is the initial configuration, the last is an 
accepting configuration, and each intermediate configuration follows from its pred- 

}~ ecessor according to the transition rules of  M. If  the alphabet used to encode 
configurations is of  cardinality c, and if such a string exists, there must be one of  

length at most c s(~). 
We first prove the result for S(n) constructible in deterministic time O(S(n)2). The 

alternating machine M '  simulating M on input x, [x [ = n, first marks off  S(n) tape 
in time O(S(n)2) • It  then writes down the initial configuration of  M and guesses (using 
existential branching) an accepting configuration of M of length at most S(n). It then 
writes down c s(n) in c-ary notation and calls a subroutine which takes inputs of  the 
form (a, fl, k), where a and fl are configurations of M and k is a number in c-ary 
notation, 0 < k _< c s(n). The subroutine checks whether a t-* fl in k or fewer steps. If  
k > 1, it guesses a middle configuration "t (using existential branching) of  length at 
most S(n), then verifies in parallel (using universal branching) that a k-* ~, in k /2  or 
fewer steps and y V-* fl in k/2  or fewer steps, by calling itself recursively with inputs 
(a, "f, k/2) and (7, fl, k/2). If k ___ 1, it checks whether a -- fl or a t- ti- 

The entire computation requires log2c s(nl = O(S(n)) recursive calls, and each call 
takes O(S(n)) steps, o r  O(S(n) 2) in all. 

To remove the restriction of constructibility, have the simulating machine existen- 
tially guess whether S(n) = 1, 2 . . . .  and perform the above computation for the 
guessed value. If  M accepts x, then the correct value of S(n) will be guessed in time 
$(n); thus M' will still accept in time O(S(n)2). If M does not accept x, then by 
Lemma 2.1, M' does not accept x for any guessed values of S(n). [] 

PROOF OF THEOREM 3.2. Assume T(n) is tape constructible, and let M be an 
alternating machine which accepts in time T(n). A deterministic machine M'  simu- 
lating M on input x first constructs T(n) and writes down the initial configuration 
OM(X). It then builds and traverses the tree with vertices labeled with 

C = (flloM(x) ~-* fl in T(n) or fewer steps}, 

and edges I--, calculating I~(fl) in postorder; recall that for a E C, 

A l~(fl) if a is universal, 
,L~B 

l~(a) = V l~'(fl) if a is existential, 

l if  a is accepting, 
0 if a is rejecting, 

since It- is a fixed point of rc. Finally, M'  accepts iff I~(OM(X)) = 1. 
At any point in the computation, if M'  is visiting a node of  the tree labeled a, then 

only a and a string representing the position of  a in the tree need appear on the tape. 
The string may be a d-ary numeral, where d is the maximum outbranching of  any 
configuration of M, denoting the unique path from the root to that vertex. Such a 
string need be of  length at most T(n). 

To remove the assumption of  constructibility, M'  may iterate the computation 
above for successive values T(n) = l, 2 . . . . .  If  M accepts x, then one such attempt 
(the one for the correct value of  T(n)) results in acceptance. If  M does not accept x, 
then no such attempt will, by Lemma 2.1. [] 

The restrictions S(n) >_ n and T(n) >_ n in the statements of  Theorems 3.1 and 3.2 
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can be relaxed to S(n) _> log n and T(n) _> log n provided alternating machines are 
equipped with a device for reading input symbols without scanning the entire input 
tape. One way to do this is to allow alternating machines to write down a number i 
in binary, taking time log i, and then enter a state requesting the ith input symbol. 
With this convention it is not difficult to see that the proofs of  Theorems 3.1 and 3.2 
still work in the cases S(n) _> log n and T(n) _> log n, since the input x need not 
appear explicitly in configurations. The input appears only on the input tape and its 
symbols are accessed as needed. 

PROOF or  THEOREM 3.3. Suppose M is an ATM which accepts in space S(n), 
where S(n) is constructible in time exponential in S(n). A deterministic machine M'  
on input x first constructs S(n), n Ix 1, and then calculates * = IC(OM(X)), where 

C = {a ~ CMI spaceta) _< S(n)}. 

l~ is calculated by writing down all configurations in C (there are at most b s("~ of 
them, for some constant b), labeling each configuration ± initially, then successively 

is lc. M '  then accepts applying I"c until no more changes occur. The resulting labeling" * 
if l~(oM(x)) = 1. 

Since zc is monotone, it need be applied at most b s(n~ times. Thus M '  makes at 
most b s"° passes over a tape of  length at most S(n) • b s('~, so M'  runs in time c s°'~ for 
some constant c. 

The case in which S(n) is not constructible in time exponential in S(n) is handled 
as in the proof  of  Theorem 3.2. In this case, the running time of  M '  on inputs 
accepted by M is at most 

S(n) 
E C m, 

rn=l 

which is still at most d s(") for some constant d. [] 

PROOF OF THEOREM 3.4. Let M be a deterministic Turing machine which ac- 
cepts in time T(n). By increasing the time to T'(n) = d .  T(n) ~ for some constant d, we 
can assume that (i) M has only one tape which is one-way infinite to the right, (ii) the 
input word is initially written left-justified on the otherwise blank tape, (iii) for all 
inputs x, M does not halt on x, and (iv) M accepts an input x by entering a designated 
state q~ at some time during the computation on x. ( I fx  is accepted, qa is entered on 
or before step T'(I x 1).) 

Say that M has states Q and tape alphabet F, and let A = Q t_J F O ($). Let x be 
an input, and let n = [ x [. The computation of  M on x is an (infinite) sequence of 
configurations ao, Ctl, or2, . . . .  We represent each configuration as an (infinite) word 
of  the form $ # q v # # #  . . . ,  where q E Q and #v E (F - (#})*; the meaning is that 
#v is written on the nonblank portion of  the tape, and the machine is in state q 
scanning the first symbol of  v. For  example, $ q o x # # #  . . .  represents the initial 
configuration ao. For t, j _> 0, let Wt.j E A be the j t h  symbol of  the representa- 
tion of  at. Since M is deterministic, it is easy to see that there is a partial function 
Nextm: A 4 -* A such that 

yt, j -~ N e x t M ( y t - l , j - 1 ,  ]O-l,j, y t - l , j+ l ,  "yt-l,j+2) 

for all t, j _> 1. NextM depends on M but not on x. Also, M accepts x iff there is a t 
and j with 1 ~_ t, j _~ T'(n) such that yt j  = q~. 

The alternating machine M '  which simulates M first guesses t a n d j  using existential 
branching and then checks whether or not yt, j ~ -  qa by working backward through 
the computation of  M. At each stage of the checking procedure, M '  has integers t 
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and j and a symbol z E A, and the goal is to check whether or not T,.J = z and accept 
or reject accordingly. To check that 3'tj = z is easy if e i ther j  = 0 (for then z must be 
$) or t = 0 (because t h e j t h  symbol of  S q o x # # #  . . .  can be found directly). To check 
that "tt.J = z for t, j >_ 1, M '  guesses four symbols Z-l, zo, zl, z2 E A using existential 
branching. If  z ~ NeXtM(Z-1, zo, Zx, z2), then M '  rejects. If  z = NextM(z-1, z0, z~, z2), 
then M'  chooses an integer k, - 1  __ k _< 2, using universal branching and repeats the 

{ checking procedure to check whether or not Tt-~.j+k = z~. 
The space required for this procedure is dominated by the space required to record 

the integers t and j. These integers are O(T(n)2). Hence for each c > 0 there is an 
integer b such that space c .  log(T(n)) suffices when the integers are written in b-ary 

notation. [] 

4. Hierarchies 

In this section we give a characterization of  quantifier alternation hierarchies in terms 
of alternating machines. 

Definition 4.1. Let M be an alternating Turing machine with no negating states, 
and let x be an input. We say M is A(n)-alternation bounded on x if whenever 

OM(X) = 010 l -*  a l l - *  0i2 ~--* *'* l -*  am, 

and ai is a universal configuration iff ai+~ is an existential configuration for 0 _< i _< 
m -  l, t h e n m < A ( I x l ) .  

In other words, any t - -pa th  out of  OM(X) alternates universal and existential 
configurations at most A(I x I) - l times. 

Definition 4.2. For  k _ 1, a ~k-machine (respectively, Hk-machine) is a k- 
alternation bounded alternating machine M such that the initial state qo is existential 
(respectively, universal). 

For example, a ~ - m a c h i n e  is a nondeterministic Turing machine. By convention, 
a ~0 or Ho machine is a deterministic machine. 

Definition 4.3. A~2~ (respectively, AI-I~) is the class of sets accepted by Ek- 
(respectively, Ilk-) machines which accept in polynomial time. 

For example, 

AZg = AUg = PTIME, 
AE~ = NPTIME,  
AFI~ = co-NPTIME. 

Let Z'~, I-I~ denote the classes of  the polynomial-time hierarchy, as defined by 
Stockmeyer [24]. The following theorem will perhaps aid in the placement of  natural 
problems in this hierarchy. 

THEOREM 4. !. ~,~ = A~g and YI~ = AI-I~. 

PROOF. The proof  is by induction on k. It is a straightforward application of  
well-known techniques (see, for example, [27]) and is left to the reader. [] 

The above theorem also gives us new complete problems for Z~ and l'I~, namely, 

S~ = ( ~ t S x S a l ~ l t l M  is a Z,-machine which accepts x in time t), 
P~ = {g'lSx$31Mr'lM is a Hk-machine which accepts x in time t}, 

where h~ is a suitable encoding of the alternating machine M. The construction is a 
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straightforward generalization of the case for Z{ which appears in [8, Th. 6], once we 
observe that there is a universal alternating Turing machine which makes the same 
sequence of  alternations as the machine it is simulating. 

By changing the resource bounds on alternation bounded machines, we get other 
hierarchies. For  example, the logspace hierarchy defined by 

ALl  l°g = (L(M)  IM is a Xk-machine which accepts in space logn), 
AII t°g = {L(M) I M is a IIk-machine which accepts in space logn}, 

is analogous to the polynomial-time hierarchy in many ways. Some of  its properties 
are listed below: 

A 1-tlog . ( l )  A X £  °g U A H £  °g _c A X i a l  1"1 . '~ , tk+l ,  

(2) AZ~ °g _C PTIME (since PTIME = ALOGSPACE);  
(3) Sl °g (respectively, plog,k ) = {MSx$'~[ M is a Xk- (respectively, Ilk-) machine 

which accepts x in space log(s)) is complete for AZ~ °g (respectively, AH~°g); 
and 

(4) Ok~S~ °g is complete for PTIME (in the same way that Ok>0S~ is complete for 
PSPACE). 

The following theorem uses the result of  Savitch [20] that NSPACE(S(n)) _C 
DSPACE(S(n) 2) and may be viewed as a strengthening of that result. 

THEOREM 4.2. (A. BORODIN [3]). I f  M is S(n)-space bounded and A(n)-alternation 
bounded with S(n) _> logn, then M can be simulated by a deterministic machine N of 
space complexity A (n)S(n) + S(n) 2. 

PROOF. Assume first that S(n) is tape-constructible. We outline a recursive 
procedure MAIN for determining whether M accepts x. The procedure uses S(n) 2 
global storage, plus S(n) local storage for each instantiation, but the depth of 
recursion is limited to A(n). Thus if the procedure is implemented on a Turing 
machine in the obvious way, that is, with a stack to preserve local storage across a 
call, then at most A(n)S(n) space is needed for the local storage. 

MAIN takes one input parameter, a configuration a of  M with space(a) _< S(n), 
and it returns the value of 13(a), where 

C = {/3]space(fi) _< S(n)}. 

Thus to check whether M accepts x, N calls MAIN with parameter OM(X) and accepts 
iff I~(OM(X)) ---- I. 

First we describe a subroutine PATH which takes two parameters a, 13, both 
configurations of  M. If  a is universal (respectively, existential), PATH determines 
whether there is a computation path from a to /3 such that all configurations 
appearing on the path (with the possible exception of  fl) are universal (respectively, 
existential) and lie in C. This can be done nondeterministically in space S(n)just by 
guessing the path. By the above-mentioned result of  Savitch, it can be done deter- 
ministically in space S(n) 2. PATH uses the S(n) 2 global storage for this purpose. 

Now we describe the action of  MAIN on input a. If a is an accepting or rejecting 
configuration or not in c,  the procedure returns immediately with I, 0, or ±, 
respectively. If  a is an existential configuration, a E C, note that 

z~,(a) = v l~(/~), 

where the disjunction is taken over the set ( i l ia  ~-* fi in such a way that all 
configurations along the path are existential and in C, and fi is not existential}. 
MAIN now writes down each nonexistential/3 in C successively and calls PATH to 
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check whether a ~*  fl through only existential configurations, and if so, calls itself 
recursively with parameter fl to determine l~(fl). If  no such fl exists, then MAIN just 
returns the value ±. 

Similarly, if a is universal, a E C, then 

l ~ (a )  = A l~(/~) ,  

where the conjunction is taken over the set { i l ia  )-* fl through only universal 
configurations in C, and fl is not universal}. In this case MAIN successively writes 
down all nonuniversal fl, space(fl) _< S(n), and calls PATH to check whether 
a )-* fl through only universal configurations in C; if so, it calls itself recursively with 
parameter fl to determine l~(fl). For universal a, MAIN must also check that 
no computation path out of  a either (i) loops infinitely on S(n) tape through 
only universal configurations, or (ii) reaches a configuration of  space S(n) + 1 
through only universal configurations. It does this by (i) calfing PATH(a,  fl) and 
PATH(fl, fl) for all universal fl of space S(n); (ii) calling PATH(a,  fl) for all 13 of 
space S(n) + 1. 

The depth of  recursion is at most A(n), since each recursive call of  MAIN 
corresponds to another alternation, and if a is the parameter to a particular instan- 
tiation of  MAIN, then only a need be preserved across recursive calls. 

The case of  S(n) not tape-constructible is handled as in the proof of  Theorem 3.2. 
That is, machine N successively iterates s = 1, 2, . . . ,  and for each value s tries to 
verify that I~(OM(X)) = 1, where C = {fllspace(fl) _< s}. [] 

The following corollary generalizes the result of Savitch [20]; his result corresponds 
to the case k = I. 

COROLLARY 4.3. For any k, if M is a k-alternation bounded alternating Turing 
machine which accepts in space S(n) >_ logn, then L(M) E DSPACE(S(n)2). 

Another corollary is that the entire logspace hierarchy is contained in 
DSPACE((Iog n)2). This is perhaps surprising, in view of  the fact that when the 
bound on the number of  alternations is removed the resulting class is PTIME. 

COROLLARY 4.4. Uk_~o E~ °g C DSPACE((Iogn)2). 

5. Alternation in Other Automata 

5.1 ALTERNATING FINITE AUTOMATA. It is known that a k-state nondeterministic 
finite automaton can be simulated with a 2k-state deterministic finite automaton [10, 
18] and that 2 k states are necessary in certain cases [ 16]. We define alternating finite 
automata and show that they accept only regular sets. Furthermore, 22~ states are 
sufficient in general to simulate a k-state alternating finite automaton deterministi- 
cally, and there are cases for which 22. states are necessary. 

Definition 5. I. An alternating finite automaton is a five-tuple, 

P = (Q, E, ql, F, g), 
where 

Q is a finite set of  s ta tes  {q l  . . . . .  qk }, 
E is a finite input alphabet, 
ql E Q is the start state, 
F C_ Q are the final states, and 
g:Q--> (E × Bk ---> B), 

where B denotes the set {0, 1}. 
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The function g associates with each state qi a Boolean valued function g(qi) ,  or gi 
for short, 

gi : ~ × B k ---~ B. 

One can think o f  gi as a function which, given some input symbol  and a Boolean 
value associated with each of  the k states, computes  a new Boolean value to be 
associated with the state qi. 

Let u denote a k-tuple o f  Boolean values (ul, u2, . . . ,  uk). Let ~ri be the ith 
projection, ~ri(u) = ui. 

Let f denote the characteristic vector o f  F, that is, 

1 if  q i @ F ,  
~i ( f )  = 0 i f  qi 6fi F.  

D e f i n e  Hi : ~ *  ~ (B  k ~ B), 1 _< i _< k, inductively as follows: 

H i ( A )  = 'rri, 

H i ( a x ) ( u )  = gi(a, Hffx)(u) . . . . .  Hk(x)(u)), 

where a ~ E, x E Z*, and A @ Z* is the null string. 
H i ( x ) ( f )  is meant  to correspond to the l*(a) o f  the previous sections. That  is, 

Hi(A)(f) = 1 iff qi is a final state, and if a x  is the input remaining, a process in 
state qi scans a and splits into k independent  parallel processes which run to com- 
pletion, determining the values o f  H j ( x ) ( f ) ,  1 _< j _< k; then gi(a,  . )  is applied to 
these values to get H i ( a x ) ( f ) .  The following definition is then the natural  analog of  
I*(OM(X)) = 1. 

Def ini t ion 5.2 P accepts  x i f fH l (x ) ( f )  = 1. 

The  Hi are defined recursively "inside out."  For  technical reasons we wish to 
define a similar function "outside in." Let Gi : Z* ~ (B k ~ B), 1 _< i _< k, be defined 
by 

Gi(A) = ~ri, 
Gi(xa) (u)  = Gi (x ) (g l (a ,  u), . . . ,  gk(a, u)). 

LEMMA 5.1. Gi = Hi, 1 _< i_< k.  

PROOF. By definition we have that Gi(A) = Hi(A)  = ~ri, and for all x, y E Z*, 
a E Z, u ~ B k, 

G i ( x a ) ( H l ( y ) ( u )  . . . .  , Hk (y)(u)) 
= Gi(x ) (g l (a ,  H~(y) (u)  . . . .  , H~(y) (u ) ) ,  . . . ,  gk(a, H~(y)(u) ,  . . . ,  Hk (y ) (u ) ) )  
= Gi(x) (H~(ay) (u)  . . . . .  Ha (ay)(u)). (1) 

But for any x E Z*, u E B k, 

Gi(x) (u)  = Gi (x ) (Hl (A) (u) ,  . . . ,  Hk(A)(u)), 

and applying (1) I x l  times we get 

Gi(x) (u)  = Gi (A) (Hl (x ) (u) ,  . . . ,  Hk(x)(u)) 
= 7r i(Hl(x)(u) , . . . ,  Hk(x)(u)) 
= Hi (x ) (u ) .  [] 

THEOREM 5.2 A n y  al ternat ing f i n i t e  au tomaton  P accepts  a regular set; moreover ,  
i f  P has k states, then there is a determinis t ic  f i n i t e  au tomaton  equivalent  to P with at 
mos t  2 2~ states. 
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PROOF. Let L ( P )  denote the set o f  strings accepted by P. Define x = y iff 
G~(x) = G~(y). Then  ~ is an equivalence relation " 2* • o f  index at most  2 , since there are 
2 2* functions B k ---) B. Also, -~ is right invariant,  since G~(x) = G~(y) implies 

Gl(xa)(u) = Gl(x)(gl(a, u) . . . . .  gk(a, u)) 
= Ga(y)(gl(a, u) . . . . .  gk(a, u)) 
= G~(ya)(u). 

It is immediate  f rom the definition o f  acceptance and L e m m a  5.1 that L ( P )  is a 
union o f  =-classes, so the states o f  the deterministic au toma ton  can be the = -  
classes. []  

The next theorem shows that the state bound  2 2* cannot  be improved in general. 

THEOREM 5.3 For each k >_ 1, there is a k-state alternating f inite automaton with 
a three-letter input alphabet such that the smallest deterministic f ini te  automaton 
accepting the same set has 2 2* states. 

PROOF. Let Z = {a, b, c}. We construct  

e = (Q, Z, qx, F, g)  

with k states and arbi t rary F. Define, for 1 _< i _< k, 

gi(a, u) = 7ri((u - I) mod  2k), 

where here and subsequently,  a Boolean k-tuple (Ul . . . . .  us) denotes that integer 
between 0 and 2 k - 1 whose k-digit b inary representat ion is u~u2 . . .  us. Note  that 

(g~(a, u) . . . . .  gk(a, u)) = (u - 1) rood 24. (2) 

Let - be the equivalence relation defined by 

x ~ y iff (Vw)[xw E L ( P )  i f f y w  E L(P)] .  

Then the - -c lasses  give the minimal  deterministic finite au toma ton  accepting the 
same set as P, so x ~ y implies x - y for any  x, y ~ Z*. We claim that the action o f  
gi on a forces the converse, that is, x - y implies x = y. To see this, assume x - y, let 
u be arbitrary, and let v = (f - u) mod  24. Then  

Ga(xa*)(f) = Ga(xa*-~)(g~(a, f) . . . . .  gk(a, f)) 
= Gl(xa~-l)((f  -- 1) rood 2 4) 

= G f f x ) ( ( f -  v) mod  2 4) 
= G~(x)(u), 

and similarly, Gl(yaV)(f) = G~(y)(u). Since xa  v ~ L ( P )  i f f y a  ~ ~ L(P),  we have 
G~(x)(u) = Gl(y)(u). Since u was arbitrary, we have x = y. 

It remains to construct  the rest o f  g so that all potential  =-classes are nonempty ;  
that is, for each Boolean function h : B  k ---) B there is an input x ~ E* such that 
G~(x) = h. Then the minimal  automaton,  given by the =-classes, will have2  2. states. 

Let 

g,(b, u) = gi(c, u) = ~ri(u) 
g~(b, O) = gl(c, O) = 1, 
gl(b, 2 k-l) = !, 

gdc, 2 k-~) = 0. 

if  i #  1 or u # 0 m o d 2  k-~, 
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Thus ,  

u i f  u ~ O ,  
(g~(b,  u) . . . . .  g k ( b ,  u)) = 2+_~ if  u = O. (3) 

u i f  u ~ O m o d 2  +-1 , 

( g l ( c ,  u ) , . . . ,  g+(c, u)) = 2 k-1 if  u = O, 
0 i f  u = 2  k-~. 

(4) 

F o r  2 +-1 _< v < 2 k, let 

a if  h ( v ) =  1, 
X v --~ 

ac  if  h(v) = 0, 

a n d  for  0 _< u < 2 k-l, let 

a if  h(u) # h(u + 2k-1), 
x u =  ab  if  h ( u ) = h ( u + 2 k - 1 ) .  

Let  n = 2 ~ - 1, a n d  let x = XnXn-~" • "XlXo. 

W e  cla im that  G~(x)  = h. First  we note  that  for  v ~ 0 m o d  2 k-1 and  any  y,  u, 

G~Cyx , ) ( v )  = G~CY)C(v - l) m o d  2+). (5: 

This  is because  xu is one  o f  a, ab ,  ac,  a n d  

G l ( y a b ) ( v )  = G l ( y a ) ( g l ( b ,  v), . . . ,  g k ( b ,  v)) 
= G~(ya ) ( v )  by  (3) 
= Gl (y ) ( (v  - 1) m o d  2 k) by  (2). 

Similar ly,  

G l ( y a c ) ( v )  = G ~ ( y a ) ( v )  = Gl(y)((v - 1) m o d  2~). 

Let  0 <_ u < 2 k-I and  v = u + 2 k-1. T h e n  

Gi(x)(u) = Gl(Xn . . .  Xv " ' "  x u  " "  xlx0)(u) 

= Gl (xn  . . .  Xv " ' "  xu)(0) 

= ~ G l ( x n  . . .  X v  . . .  X u + l ) ( 2  + - 1) i f  h(u) ~ h(v) 
[ G i ( x , ,  x v  " "  Xu+l)(2 + - 1 -  1) i f  h ( u ) =  h(v) 

= ~ G d x n  " ' "  Xv)(2 k-l) i f  h(u) ~ h(v) 
( G l ( x n  Xv)(0) i f  h(u) = h(v) 

[ Gl(xn  . . .  Xv+0(2 +-1 - 1 )  i f  h(u) ~ h(v) 
Gl(Xn xv+l)(2 + - 1) i f  h(u) ~ h(v) 

= Gl (xn  Xv+l)(2 + - 1) if  h(u) = h(v) 
Gl(Xn Xv+l)(2 +-1 -- 1) if  h(u) = h(v) 

[ G l ( X n  . . .  Xv+l)(2 + -  1) 
= [C~(x,, Xv+l)(2 +-1 - l) 

= ~ Gff)t)(v) 
[G~(~,)(u) 

= h ( u )  

if  h ( u ) =  1 
if  h(u) = 0 

if  h ( u ) =  1 
if h(u) = 0 

by (5) 

by  (3) a n d  (21 

by  (5) a n d  (21 
a n d  h(v) = 1 
and  h(v) = 0 
and  h(v) = 1 
and  h(v) = 0 

by  (4) and  (21 

by (5) 
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Similarly, 

G~(x)(v) = G l ( x , ,  . . .  x , ,  . . .  x , ,  . . .  Xo)(V) 
= Gl(xn . . "  x v  . . .  xu)(2 k-l) 

-- GI(x,,  . .  "xv . . .  xu÷l)(2 *-1 - 1) 
= G ~ ( x ,  . . .  x , , ) ( 0 )  

[ G l ( x , ,  . . .  xv+0(2 k -  1) if  
= [ G ~ ( x ,  Xv+l)(2 k - l -  1) if 

= ~ G~(A)(v) if 
[ G~(A)(u) if  

= h ( v ) .  

This completes the proof. [] 

It is interesting that the reverse of any L ( P ) ,  

( L ( P ) )  a = { x R I x  E L ( P ) } ,  
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h ( v )  = l 

h ( v )  --  0 

by (5) 
by (3) and (2) 
by (5) 

h ( v )  = 1 
h ( v ) = 0  by (5) 

where x r~ is x written backward, can be accepted deterministically with only 2* states, 
by taking 

x = fl iff H,(x)(f) = H,(y)(f), 1 ___ i _< k. 

5.2 ALTERNATING PUSHDOWN AUTOMATA. We now turn to pushdown automata 
and show that for these devices alternation does enlarge the class of accepted 
languages. An alternating PDA is similar to a nondeterministic PDA (see [10, 
Ch. 5]) except that there is a function mapping states to (A, V, accept, reject} and 
the input is supplied with a fight endmarker which can be sensed by the machine; 
the input head is one-way. A conf igurat ion of an alternating PDA consists of the 
state, the input word, the position of  the input head, and the contents of the pushdown 
store. The definition of acceptance for alternating PDAs follows the definition given 
in Section 2 for ATMs simply by replacing ATM configurations by PDA configu- 
rations in the definition. Let ALT-PDA denote the class of  languages accepted by 
alternating PDAs. 

THEOREM 5.4. t.Je>O D T I M E ( c " )  C_ A L T - P D A .  

PROOF. By Theorem 3.4 it suffices to prove that 

ASPACE(n) C ALT-PDA. 

Let M be an ATM which accepts in space n. We first modify M so that M has only 
one tape which is one-way infinite to the right, M has no negating states, and, when 
given an input of length n, at most n + 1 tape squares are visited along any 
computation path (cf. Theorems 2.5 and 2.6). It is also convenient to assume that the 
transition relation is given by a partial function 

~:Q x r---~ (Q x I ~ x {left, right}) 2, 

where Q is the set of states and I ~ is the tape alphabet; that is, when in a non final 
state q scanning the symbol y, M has exactly two moves described by the two 
components of 8(q, y). As in the proof of Theorem 3.4, a conf igurat ion of M is viewed 
as a word ~qv where #v E 1"*, [#v[ = n + 1, and q E Q. The initial configuration on 
input x is q o x # .  For configurations a and fl write a I-1 fl (a I---2 fl) i f f a  can reach fl 
in one step according to the first (second) component of & The alternating PDA M'  
which simulates M will "choose" a computation path of M and push it onto the 
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pushdown store. The path is represented by a string of the form 

a r m  a a 0 0Ogl mto~2 • • • , 

where ao, al, a2 . . . .  are configurations of  M (a R denotes the reverse of a), mi E 
( 1, 2} for i _> 0 (we assume 1, 2, ~ Q u F), a0 = q o x # ,  and ai I--m, ai+~ for i _> 0. The 
symbol mi is chosen by a universal (existential) branch of  M'  if a~ is a universal 
(existential) configuration of  M. The strings ag are chosen by existential branching. 
Each time the guess of  some a l l  is terminated, M '  enters a universal state to choose 
one of  three further actions. One action is to continue choosing the computation 
path; another action is tocheck  that a~+l is the correct length n + 2; and another is 
to check that a, ~-m, a~+l. This latter check is, in essence, that of  checking that two 
words match position by position, where "position" is actually a block of four 
symbols and "match" means match according to the transition function of M and 
the value of  mi. The matching is facilitated by universal branching, that is, by 
universally choosing a position in a,+l to make the match, and the input head of M' 
is used to measure the distance (roughly) n between the chosen block of  a,+~ and the 
corresponding block of  ag. 

Notice that the alternation of  M'  is used in two ways. First, in choosing the mi it 
is used to simulate the alternation of  M. Second, universal branching is used to 
perform several actions in parallel, such as checking that two configurations match 
in all positions. We now describe the procedures of  M'  more carefully. The and's 

(A) and or's  (V) in these procedures are implemented using alternation. For example, 
A A B means to enter a universal state to choose which one of  A or B to perform. 

NEW: Using existential branching, push some word in F*.  Q. F* onto the pushdown store; at 
the point where the state symbol is guessed, remember in the finite-state control 
whether it is accepting, rejecting, universal, or existential. If this is the first invocation 
of  NEW, then call INIT-TOP; otherwise, call TOP. 

INIT-TOP: CONTINUE A INIT. 
TOP: CONTINUE A LENGTH A MATCH. 
CONTINUE: If the top configuration is accepting, then accept. 

If the top configuration is rejecting, then reject. 
If the top configuration is universal, then (push 1 A push 2), and then call NEW. 
If  the top configuration is existential, then (push" 1 V push 2), and then call NEW. 

INIT: Check that (qox#) a is written on the pushdown store and accept or reject accordingly; 
this is done by popping the store while comparing it with the input. 

LENGTH: Using the input head to count up to n, check that the top of the store contains a string 
of  n + 2 symbols in (Q u F)* followed by a symbol in { 1, 2}, and accept or reject 
accordingly. 

MATCH: Using universal branching, choose a position in the top configuration to match against 
the corresponding position in the next-to-top configuration. The distance (roughly) n 
between the two positions is measured by using the input head of  M '  as discussed 
above. If the two positions match, then accept; otherwise reject. 

We let reader verify that these procedures correctly simulate M and that they can be 
implemented on an alternating PDA. Since the input head of  M'  is one-way, it is 
important to note that the input is read only once along any computation path 
of  M'.  [] 

In fact 

U DTIME(c")  = ALT-PDA. 
c > 0  

As part of  their study of  alternating auxiliary ptashdown automata, Ladner, Lipton, 
and Stockmeyer [15] prove that ALT-PDA C Uc>0 DTIME(c"); moreover, this is 
true if the alternating PDA has a two-way input head. 
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