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Abstract. The use of Turing machines for calculating finite bi~ary sequences is studied 
from the point of view of information theory and the theory of recursive functions. Various 
results are obtained concerning the number of :instructions ia programs. A modified form of 
Turing machine is studied from the same point of view. Aa application to the problem of de- 
fining a patternless sequence is proposed in terms of the concepts here developed. 

Introducli(m 

In this paper tile Turiag machine is regarded ~ a general purpose computer and 
some practical questions are asked about programming it. Given an arbitrary 
finite binary sequence, what is the length of the shortest p~vgram for calculating it? 
What are the properties of those binalT sequences of a given length which require 
the longest prograIILs? Do :most of the binary sequences of a given length require 
programs of about the same length? 

The questions posed above am answered in Part 1. In the course of answering 
them, the logical design of the Turing machine is examined as to redundancies, and 
it is found that it is possible to increase the efficiency of the Taring machine as a 
computing instrument without a major alteratkm in the philosophy of its logical 
design. Also, the following question raised by C. E. Shannon [I] is pat%i~flly a~- 
swered: What effect does the tmraber of different symbols that a Turing machine 
can write on its t~pe have on the length of the program required for a given calcula- 
tion? 

In Part 2 a major alteration in the logical design of the Turing machine is in- 
troduced, and then MI the questions about the lengths of programs which had pre- 
viously been asked about the first computer are asked again. The change in the 
logical design may be described in the following terms: Programs for Turing ma- 
chines may have tr~r~fers from any part of the program to any other part, but 
in the programs for the Turing machines which are considered in :Part 2 there ix a 
fixed upper bound on tim length of transfers. 

Part 3 deals with the soraewhat philosophical problem of defirfing a random or 
patteraless binary seqnenee. The following definition is proposed: Patternless 
finite binary sequences of a given length are sequences which in order to be com- 
puted require programs of approximately the same length as the longest programs 
required to compute any binary sequences of that given length. Previous work 
along these lines and its relationship to the present proposal are discussed briefly. 

Part 1 

1.1 We define an N-state M-tape-symbol Turing machine by an N-row by 
M-column table. Each of the N M  places in this table must have an entry consisting 
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of an ordered pair (i, j) of natural numbers, where i goes from 0 to N and j goes 
from 1 to M+2. These entries constitute, when specified, the program of the N-state 
M-tape-symbol Turing machine. They are to be interpreted as follows: An entry 
(i, j )  in the kth row and the pth column of the table means that when the machine 
is in its kth state and the square of its one-way infinite tape which is being scanned 
is marked with the pth symbol, then the machine is to go to its ith state if i # 0 
(the machine is to halt if i = 0) after performing the operation of (1) moving the 
tape one square to the right i f j  = M + 2, (2) moving the tape one square to the 
left if j = M + 1, and (3) marking (overprinting) the square of the tape being 
scanned with the j th  symbol if 1 _< j < M. Special names are given to the first, 
second and third symbols. They are, respectively, the blank (for unmarked square), 
0 and 1. 

A Turing machine may be represented schematically as follows: 

EndofTape[ I Iol 1_11111 t I I  111010111 I l l l  
Scanner T Tape 

I Black Box 

It is stipulated that 
(1.1A) Initially the machine is in its first state and scanning the first square 

of the tape. 
(1.1B) No Turing machine may in the course of a Calculation scan the end 

:square of the tape and then move the tape one square to the right. 
(1.1C) Initially all squares of the tape are blank. 
Since throughout this paper we shall be concerned with computing finite binary 

~sequences, when we say that a Turing machine calculates a particular finite binary 
sequence (say, 0111i000), we shall mean that the machine stops with the sequence 
written at the end of its tape, with all other squares of the tape blank and with its 
:scanner on the first blank square of the tape. For example, the following Turing 
machine has just calculated the sequence mentioned: 

101111111110101011 I1 I ~ . . .  
T 

I Halted 

1.2 There are exactly ( (N + 1)(M + 2)) ~ possible programs for an N-state 
M-tape-symbol Turing machine. Thus to specify a single one of these programs re- 
quires log: ( ( (N  + 1)(M + 2)) ~ )  bits of information, which is asymptotic to 
NM log~ N bits for M fixed and N large. Therefore a program for an N-state 
M-tape-symbol Turing machine (considering M to be fixed and N to be large) can 
be regarded as consisting of about NM log2 N bits of information. I t  may be, how- 
ever, that in view of the fact that different programs may cause the machine to 
behave in exactly the same way, a substantial portion of the information necessary 
to specify a program is redundant in its specification of the behavior of the machine. 
'This in fact turns out to be the case. It will be shown in what follows that  for M 
fixed and N large at least 1/M of the bits of information of a program are re- 
dundant. Later we shall be in a position to ask to what extent the remaining por- 
tion of ( 1 -  1/M) of the bits is redundant. 
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The basic reason for this redundancy is thgt any remunberi~g of the rows of the 
table (this amounts to ~ renaming of the states of the machine) in rio w~w changes 
the behavior th%t a given program will cause the rm~chine to ha:re, Thus the st.~tes 
can be named in a manner determined by the sequencing of the progr~ml, arm this 
makes possible the omission of state Immbers from the program. This idea is by no 
means new. I t  may be seen in most computers with r~mdom access meIttories. I~1 
these computers the address of the next instruction to be executed is usually 1 
more than the address of the current instruction, a~M this makes it generally uu~ 
necessary to use memory space in order to give the address of the next instruction 
to be executed. Since we are not concerned with the practical e~lgineerir~g feasibility 
of a logicM design, we can take this idea a step farther. 

1.8 In the presentation of the redesigned Turing machine let. us begi~ with a~ 
example of the manner in which one can take a program for a Taring machine ~md 
reorder its rows (rename its states) until it is in the fo,:mt~t of the redesigned ma- 
chine. In the process, several row numbers in the program are removed and re~ 
placed by + or + +  -- this  is how redundant information i~ the program is re- 
moved. The "operation codes" (which are 1 for "print blank," 2 for "print zero," 
3 for "print one," 4 for "shift tN~)e left" and 5 for "shift taps right") are omitted 
from the program; every time the rows are reordered, the owcodes arc just carried 
along. The program used as an example is as follows: 

row 1 1 9 7 
row 2 8 8 8 
row 3 9 6 1 
row 4 3 2 0 
row 5 7 7 8 
row 6 6 5 4 
row 7 8 6 9 
row 8 9 8 1 
row9 9 1 8 

To prevent confuskm later, letters instead of mm'~bers are used in the program: 

row h A I G 
row B H It  I[ 
row C I F A 
row D C B J 
row E G G I:[ 
row [" F E D 
row G F[ F I 
row II I H A 
row I [ A H 

Row A is the first row of the table 

t h e  t a b l e :  

row 1 t [ G 
row B H H H 
row C [ F 1 
row D C B J 
row E G G I[  
row F F E D 
row G H F I 
row H I H 1 
row I I 1 H 

and shall remain so. Replace A by I throughout 
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To find to  which  row of t he  t ab le  to assign the  number  2, read  across the  f irst  
row of  the  t a b l e  unt i l  a l e t t e r  is reached.  H a v i n g  found  an  I ,  

(1)  replace  i t  b y  a -}-, 
(2)  move  row I so t h a t  i t  becomes the  second row of t he  table ,  and  
(3)  rep lace  I b y  2 t h roughou t  the  t ab le :  

row 1 1 -b G 
row 2 2 1 H 
row B H H H 
row C 2 F 1 
row D C B J 
row E G G H 
row F F E D 
row G H F 2 
row H 2 H 1 

To find to  which row of the  tab le  to  assign the  number  3, read  across t he  second 
ro~¢ of the  t ab l e  unt i l  a l e t t e r  is found.  H a v i n g  found an  H,  

(1 )  replace  i t  b y  a -b,  
(2 )  m o v e  row H so t h a t  i t  becomes the  t h i rd  row of  t he  table ,  and  
(3 )  replace  H b y  3 t h roughou t  the  t ab le :  

row 1 1 ÷ G 
row 2 2 1 -b 
row 3 2 3 1 
row B 3 3 3 
row C 2 F 1 
row D C B J 
row E G G 3 
row F F E D 
row G 3 F 2 

To find to which row of~the t ab l e  to  assign the  n u m b e r  4, r ead  across t h e  t h i rd  
row of  t he  t a b l e  unt i l  a l e t t e r  is found.  H a v i n g  fai led to  f ind one, read  across rows 
1, 2 a n d  3, respect ive ly ,  un t i l  a l e t te r  is found.  ( A  l e t t e r  m u s t  be found,  for o the r -  
wise rows 1, 2 and  3 are  t he  whole  p rog ram. )  H a v i n g  found  a G in  row 1, 

(1 )  replace  i t  b y  a + + ,  
(2 )  move  row G so t h a t  i t  becomes the  fou r th  row of t he  tab le ,  a n d  
(3)  replace  G b y  4 t h r o u g h o u t  t he  t ab l e :  

r o w l  1 -t- ÷ ÷  
row 2 2 1 + 
row 3 2 3 1 
row 4 3 F 2 
row B 3 3 3 
row C 2 F 1 
row D C B J 
row E 4 4 3 
row F F E D 

T h e  next  two ass ignments  proceed as  in the  

r o w l  1 -b +ze r o w l  
row 2 2 1 + row 2 
row 3 2 3 1 row 3 
row4 3 -b 2 row4 

cases of rows 2 and 3: 

1 ÷ + ÷  
2 1 -~ 
2 3 1 
3 -}- 2 
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row5 5 E D row5 5 + D 
row B 3 3 3 row 6 4 4 3 
row C 2 5 1 row B 3 3 3 
rowD C B J rowC 2 5 1 
r o w e  4 4 3 rowD C B J 

To find to which row of the table to assign the number 7, read across the sixth 
row of the table until a letter is foutld. Having failed to find one, read across rows 
1, 2, 3, 4, 5 and 6, respectively, until a Letter is found. (A letter must  be found, for 
otherwise rows 1, 2, 3, 4, 5 and 6 are the whole program.) Having found a D in 
row 5, 

(1) replace it  by  a ~ %, 
(2) move row D so tha t  it becomes the seventh row of the table, and 
(3) replace D~by 7 throughout the table: 

row 1 1 -{- -b-t- 
row 2 2 1 -b 
row 3 2 3 1 
row 4 3 Jr 2 
row 5 5 -{- -b-I- 
row 6 4 4 3 
row 7 C B J 
row B 3 3 3 
row C 2 5 1 

After three more assignments the following is finally obtained: 

row 1 1 ÷ -I- -l- 
row 2 2 1 "b 
row 3 2 3 1 
row 4 3 -{- 2 
row 5 5 ÷ + ÷  
row 6 4 4 3 
row 7 ÷ +-f- + ÷  
row 8 2 5 1 
row 9 3 3 3 
row i0 

This example is atypical in several respects: The  state order could have needed a 
more elaborate scrambling (instead of which the row of the table to which a number  
was assigned always happened to be the last row of the table at  the moment ) ,  
and the fictitious state used for the purposes of halting (state 0 iR the formulation 
of Section 1.1) could have ended up as any one of the rows of the  table except the 
first row (instead of which it ended up as the last  row of the table) .  

The  reader will note, however, tha t  9 row numbers have been eliminated ( and  
replaced by  -]- or -{-~)  in a program of 9 (actual)  rows, and that ,  in general, 
this process will eliminate a row number from the program for each row of the program. 
Note  too tha t  if a program is " l inear"  (i.e., the machine executes the instruction 
in storage address 1, then the instruction in storage address 2, then  the instruction 
in storage address 3, etc.), only -t- will be used; departures from linearity necessitate 
use of ÷ + .  

There  follows a description of the redesigned maehine. In  the formalism of t h a t  
description the program given above is as follows: 
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10 
(1, ,0) (0, ,1) (0, ,2) 
(2, ,o) (1, ,0) (o, ,1) 
(2, ,0) (3, ,0) (1, ,o) 
(3, ,0) (0, ,1) (2, ,o) 
(5, ,o) (0, ,1) (0, ,2) 
(4, ,0) (4, ,0) (3, ,0) 
(0, ,1) (0, ,2) (0, ,2) 
(2, ,0) (5, ,0) (1, ,0) 
(3, ,0) (3, ,0) (3, ,0) 

Here the third member of a triple is the number of + ' s ,  the second member is the 
op-code, and the first member is the number of the next state of the machine if 
there are no + ' s  (if there are + ' s ,  the first member of tile triple is 0). The number 
outside the table is the number of the fictitious row of the program used for the 
purposes of halting. 

We define an N-state M-tape-symbol Turing machine by an (N + 1) X M table 
and a natural number n (2 < n G N + I ) .  Each of the (N + 1)M places in this 
table (with the exception of those in the nth row) must have an entry consisting of 
an ordered triple (i,j,k) of natural numbers, where k is 0, 1 or 2; j goes from 1 
to M--b2; and 

] i  goes from l to N + l  i fk  = 0, 
[ i  = 0 if k # 0. 

(Places in the nth row are left blank.) In addition: 
(1.3.1) The entries in which lc = 1 or k = 2 are N in number. 
Entries are interpreted as follows: 
(1.3.2) An entry (i,j,O) in the pth row and tile ruth column of the table means 

that  when the machine is in the pth  state and the square of its one-way infinite 
tape which is being scanned is marked with the ruth symbol, then the machine is to 
go to its ith state if i ¢ n (if i = n, the machine is instead to halt) after performing 
the operation of (1) moving the tape one square to the right if j = M + 2, (2) 
moving the tape one square to the left i f j  = M + 1, and (3) marking (overprinting) 
the square of the tape being scanned with the j th  symbol if 1 _< j < M. 

(1.3.3) An entry (0, j, 1) in the pth row and mth column of the table is to be 
interpreted in accordance with (1.3.2) as if it were the entry ( p + l ,  j ,  0). 

(1.8.4) For an entry (0, j ,  2) in the pth row and mth column of the table the 
machine proceeds as follows: 

(1.3.~a) I t  determines the number p' of entries of the form (0, , 2) in rows of the 
table preceding the pth row or to the left of the ruth column in the pth row. 

(1.3.4b) I t  determines the first p t + l  rows of the table which have no entries 
of the form (0, , 1) or (0, , 2). Suppose the last of these p ' + l  rows is the p"th 
row of the table. 

(1.3.~c) I t  interprets the entry in accordance with (1.3.2) as if it were the 
entry (p '~+l,  j ,  0). 

1.4 In Section 1.2 it was stated that  the programs of the N-state M-tape- 
symbol Turing machines of Section 1.3 require in order to be specified ( 1 - 1/M) 
the number of bits of information required to specify the programs of the N-state 
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M-tape-symbol Turi::g machi:ms of Section 1.1. (As before, M is regarded to be 
fixed and N to be large.) This assertion is justified here. In  view of (1.3.1), at  most 
N ( 3 ( M + 2) ) x~..~ ( N + 1 ) ~v(u-:~ w'ws of making entries in the table of an N-state 
M-tape-symbol ~Furing inachilm of Seetiotl 1.3 count as programs. Ttms only tog~ 
of this number or asymptotically N ( M - 1 )  log,,, N bits are required to specify the 
program of an N-state M-tape-symbol maehiile of Section 1.a. 

Henceforth, in speaking of an N-state M-tape-symbol Turing inaehhm, one of 
the machines of Section t.3 will be meant. 

1.5 We now define two sets of functions which play a fundamental role in all 
that  follows. 

The members L~,~( • ) of the first set are defined :for M = 3, 4, 5, • • • on the set of 
all finite binary sequences S as follows: 

An N-state  M-tape-symbol Turing machine can be programmed to calculate 
S if and only if N > L , ~ ( S ) .  

The second s e t  .,(C,~) (M 3, 4, 5, • ) is defined by 
L M ( C ~ )  = maxs L M ( S ) ,  

where S is any binary sequence of length n. 
Finally, we denote by ,~fC,~ (M = 3, 4, 5, ..  • ) the set of all binary sequences S 

of length n satisfying L~,~(S) = L~f(C,,). 

1.6 In  this section it is shown that  for 1 1 = 3, 4:, 5, . • • 

L~,,( C,, ) ~ ( n / (  ( M - 1 ) log~ n) ). 

We first show that  L,~(C,~) is greater than a function of n which :is asymptotically 
equM to ( n / ( ( M - 1 ) l o g ~  n) ) .  From Seet:m~ 1A it is clear that  there are at  most 
2((t+,N)N(M--~) ~o~e.¥) different programs for an N-s tale M -tape-symbol [ un ng machine, 
where e, denotes a (not necessarily positive) function of x and possibly other vari- 
ables which tends to zero as x goes to infinity with any other w~riables hekl fixed. 
Since a different program is :required to caletllate each of the 2 ~ different binary 

r,~ 1" sequences of length n, we see; that an N-state M-tape-symbol [u  "rag machine ean 
be programmed to calculate any binary sequence of length n only if 

(1 + e n ) N ( M  - 1) logan  ~ n or N > (1 + e ~ ) ( n / ( ( M  - -  1) logan) ) .  

I t  follows from the definition of L~¢(C~) that  

Lar(C,,) >_ (1 + e , , ) ( n / ( ( M  - 1) logan)).  

Next we show that  L,,¢(C~) is less than ~ function of n wMch is asymptotically 
equal to (n / (  ( M -  1) log~ n) ). This is done by  showing how to construct for any 
binary sequence S of length not greater than ( I + e ~ . ) N ( M - 1 )  logan  a program 
which causes an N-state M-tape-symbol "12 u mg machine to calculate S. The main 
idea is illustrated in the ease where M = 3 (see F" tgure 1). 

The execution of this program is divided into phases. There are twice as many 
phases as there are rows in Section I. The current phase is determined by a binary 
sequence P which is written out strutting on the second square of the tape;. The nth  
phase starts in row 1 with tile scanner on the first square of the tape and with 

f P = 1 1 1 . . -  1 ( i l ' s )  i f n  = 2 i +  1, 
• 111 10 (i  l ' s )  if n 2i + 2. 
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Roy) 
Number 

1 
2 
3 
4 
5 
6 
7 
8 

d 
dA-1 
d+2 
d-4-3 
d+4 
d+5  
d-}-6 
dA-7 

f 

Calurn~ Number 
1 2 3 

2 , 4  2 4 
• ' ' , 2  "" 3 
" ' ' , 2  "" 3 
" ' ' ~ 2  "" 3 
• . . , 2  " 3 

• " , 2  "" 3 
• " , 2  "" 3 
• " , 2  "" 3 

d + l ,  4 d + l ,  4 
d~-2, 4 d-t-2, 4 
d~-3, 4 d+3,  4 
d+4 ,  4 d+4,  4 
dA-5, 4 d+5,  4 
d-}-6, 4 d+6,  4 
d-i-7, 4 d+7,  4 
d-i-8, 4 d+8 ,  4 

: 

2, 4 
3, 4 
4, 4 
5, 4 
6, 4 
7, 4 
8, 4 
9, 4 

d-t-l, 4 
d+2, 4 
d+3, 4 
d+4,  4 
d+5,  4 
d-t-f, 4 
d-i-7, 4 
d+8,  4 

• This section is the same (except 
[or the changes in row numbers 
caused by relocation) regardless 
of the value of N.] 

Fro. 1 

Section I: approximately 
'(1-1/log~N)N rows 

Section II :  approximately 
N/log~.N rows 

Section I I I :  a fixed number 
of rows 

This program is in the format of the machines of Section 1.1. 
There are N rows in this table. The unspecified row numbers in Section I are all in the range 

from d to f - l ,  inclusive. The manner in which they are specified determines the finite binary 
sequence S which the program computes. 

Control then passes down column three through the ( i +  1)-th row of the table, and 
then control passes to 

I row iA-2, column 1 if n = 2i  Jr 1, 

row i-4-2, column 2 if n 2i -1- 2, 

which (1) changes P to what it must  be at the start  of the (n-l-1)-th phase, and 
(2) transfers control to a row in Section II. Suppose this row to be the ruth row of 
Section I I  from the end of Section II.  

Once control has passed to the row in Section II ,  control then passes down Section 
II  until row f is reached. Each row in Section II  causes the tape to be shifted one 
square to the left, so that  when row f finally assumes control, the scanner will be on 
the ruth blank square to the right of P. The following diagram shows the way things 
may look at this point if n is 7 and m happens to be 11 : 

I 1111111°1 I ] [ I I l--l-I i I I I } I I ~  ~ - - - - ~ - -  ~ i'" Iolo111o111~ ~ ~11111°11111, . . .  

V 10 l 'Long Blank St S, .... S. 
Region 

Now control has been passed to Section III .  First of all, Section I I I  accumulates 
in base-two on the tape a count of the number of blank squares between the scanner 
and P when f assumes control. (This number is m-- 1.) This base-two count, which is 
written on the tape, is simply a binary sequence with a 1 at  its left end. Section I I I  
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then removes this 1 from the left end of the binary sequence. The res~dting sequence 
is called S , .  

:Note that if the row numbers entered in 

f row i+2 ,  column 1 if 2i 'n + 1, 
row i + 2 ,  cohunn 2 if n 2i + 2, 

of Section I are suitably specified, this bimu'y sequence S,, can be im~de any one of the 
2 ~ binary sequences of length v = (the greatest integer not greater than 
log2 ( f - d )  - 1). Finally, Section I I I  writes S, in a region of the tape far to the 
right where all the previous Si (j  = 1, 2, . . . ,  n - l )  have been written during 
previous phases, cle~ms up the tape so that o~fly the ~quenees P and 
Sj (j  = 1, 2, • .. , n) remain on it, positions the scanner back on the square at the 
etld of the tape and, as the last act of phase n, passes control back to mw 1 again. 

The foregoing description of the workings of the program omits some important 
details for the sake of clarity. These follow. 

I t  must  be indicated how Section I I I  lmows when the last phase (phase 2 ( d - 2 ) )  
has occurred. During the n th  phase, P is copied just to the right of $1, $2, • • - , S, 
(of course a blank square is left between S,, and the copy of P ) .  And during the 
( n + l ) - t h  phase, Section I I I  checks whether or not P is currently different from 
what it was during the nth phase when the copy of it was made. If  it isn't different, 
then Section I I I  knows that  phasing has in fact stopped and that  a termination 
routine must be executed 

The termination routine first forms the finite binary sequence S* consisting of 
S t ,  S~, . . .  , S~(a-2), each immediately following the other. As each of the Si can 
be any one of the 2 ~ binary sequences of length v if the row numbers in the entries in 
Section I are appropriately specified, it follows that  S* can be any one of the 2 '~ 
binary sequences of length w = 2( d-- 2)v. Note that  

2(d -- 2 ) ( l o g ~ ( / -  d) -- 1) > w > 2(d - 2)(log~ (] - d) - 2), 

so that  

w ,-~ 2(( 1 - 1/log~ N ) N ) (  log~ ( N/log2 N)  ) N 2hr log~ N. 

As we want the program to be able to compute any sequence S of length not greater 
than (2-t-e~)N logaN, we have S* consist of S followed to the right by a single 1 
and then a string of O's, and the termination routine removes the rightmost O's and 
first 1 from S*. Q.E.D. 

The result just obtained shows that  it is impossible to make further improvement 
in the logical design of the Turing machine of the kind described in Section 1.2 and 
actually effected in Section 1.3; if we let the number of tape symbols be fixed and 
speak asymptotically as the number of states goes to infinity, in our present Tnring 
machines 100 percent of the bits required to specify a program also serve to specify 
the behavior of the machine. 

Note toe that  the argument presented in the first paragraph of this section in fact 
establishes that,  say, for any fixed s greater than zero, at  most n- '2 ~ binary sequences 
S of length n satisfy 

L ~ ( S )  ~_ (1 + e ,~) (n / ( (M -- 1) logan)) .  

Thus we have: 
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For any fixed s greater than zero, at most n-'2 ~ binary sequences of length n fail to 
satisfy the double inequality: 

(1 + e~)(n / ( (M -- 1)logan))  < L~(S)  <_ (1 + e~' ) (n/ ( (M - 1) logan)) .  

1.7 I t  may be desirable to have some idea of the "local" as well as the "global" 
behavior of L~(C~). The following program of 8 rows causes an 8-state 3-tape- 
symbol Turing machine to compute the binary sequence 01100101 of length 8 (this 
program is in the format of the machines of Section 1.1) : 

And in general: 
(1.7.1) LM(C~) <_ n. 

1,2 2,4 2,4 
2,3 3,4 3,4 
3,3 4,4 4,4 
4,2 5,4 5,4 
5,2 6,4 6,4 
6,3 7,4 7,4 
7,2 8,4 8,4 
8,3 0,4 0,4. 

From this it is easy to see that  for m greater than n: 
(1.7.2) LM(C,~) <__ LM(C~) + (m - n). 

Also, for m greater than n: 
(1.7.3) L~(Cm) + 1 >__ L~(C,~). 

For if one can calculate any binary sequence of length m greater than n with an 
M-tape-symbol Turing machine having L~(C,~) states, one can certainly program 
any M-tape-symbol Turing machine having L~(Cm) + 1 states to calculate the 
binary sequence 

. . . . . . . . . . . . . . . . . . . .  10000000000 . . . . . . . . . .  0000000000 
/ / 

Any particular sequence This sequence of 
of length n length (m-n) 

and then--instead of immediately halting--to first erase all the O's and the first 1 on  
the right end of the sequence. This last part of the program takes up only a single 
row of the table; in the format of the machines of Section 1.1 this row r is: 

row r r,5 r,1 0,1. 

Together (1.7.2) and (1.7.3) yield: 
(1.7.4) ]L~(C~+,) - L,r(C~)[ < 1. 

From (1.7.1) it is obvious that  LM(C1) -- 1, and with (1.7.4) and the fact t h a t  
L~(C~) goes to infinity with n it finally is concluded that :  

(1.7.5) For any positive integer p there is at least one solution n of L~(C~) -- p.  

1.8 In  this section a certain amount of insight is obtained into the properties 
of finite binary sequences S of length n for which L~(S)  is close to L~(C~). M is 
considered to be fixed throughout this section. There is some connection betweeI~ 
the present subject and that  of Shannon in [2, Pt. I, especially Th. 9]. 

The main result is as follows: 
(1.8.1) For any e > 0 and d > 1 one has for all sufficiently large n: If S is a n y  

binary sequence of length n satisfying the statement that  

!ii~ii 

ili i~ 



P R O G R A M S  F O R  C O M P U T I N G  F I N I T E  B I N A R Y  S l g Q V E N C E S  5 5 7  

(1.8.2) the ratio of the number of O's in S to n differs fl'om ½ by more than e, 
then L~,(S) < LM(C~,~d~(~÷,.*,-~)1). 
Here H(p, q)(p > O, q >_ O, p q- q = 1) is a special case of the entropy function of 
Boltzma~m statistical mechanics and information theory and equals 

i 0 if p = 0 or 1, 
- p  log~ p - q logs q otherwise. 

Also, a real number enclosed in brackets denotes the least integer greater than the  
enclosed reM. The H function comes up because the logarithm to the base-two of the  

~(k/~)-~l>~ k of binary sequences of length n satisfying (1.8.2) is 

asymptotic to nil(½ q- e, ½ -- e). This iaay be shown easily by considering the ratio 
of successive binomiM coefficients and using the fact that  log (n!) ~-- n log n. 

To prove (1.8.1), first construct a class of effectively computable functions M,~( • ) 
with the natural numbers from 1 to 2 ~ as range and all binary sequences of length n 
as domain. M,,(S) is defined to be the ordinal number of the position of S in an order- 
ing of the binary sequences of length n defined as follows: 

1. If  two binary sequences S and S' h~ve, respectively, m and m' 0%, then S comes 
before (after) S'  according as iOn~n) - ½1 is greater (less) than I(rn'/n) - ½{. 

2. If I does not settle which comes first, take S to come before (after) S '  according 
as S represents (ignoring 0's to the left) a larger (smaller) number in base-two 
notation than S' represe~tts. 

The only essential feature of this ordering is that it gives small ordinal numbers to 
sequences for which I ( m / n )  - ½1 has large values. In fact, as there are only 
2 a+~')~t~(l+~'t-") binary sequences S of length n satisfying (1.8.2), it follows that at  
worst M,~(S) is a number which in base-two notation is represented by a binary 
sequence of length ~-~nH(½ + e, ½ - e). Thus in order to obtain a short program 
for computing an S of length n satisfying ( 1.8.2), let us just give a program of fixed 
length r the values of n and M,,(S) and have it compute S( = M~-~(M~(S))) from 
this data. The manner ia which for n sufficiently large we give the values of n and 
M,,(S) = to the program is to pack them into a single binary sequence of length at 
most %(1 + (d - 1)/2)H(½ + e, ½ - e)] + 2(1 + [log2 n]) as follows: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/ / 
The binary  sequence representing Mn(S) The  binary sequence representing n 

in  base-two notation wi th  each of i t s  bits doubled 
(e.g., if n = 43, th is  is 110011001111) 

Clearly both n and M,~(S) can be recovered from this sequence. And this sequence 
can be computed by a program of LM(C[~(X+(d-1)/2)H(¢+~.~-~)]+2(I+tlogu~])) rows. 

Thus for n sufficiently large this many rows plus r is all that  is needed to comput e 
~ny binary sequence S of length n satisfying (1.8.2). And b y  the asymptotic formula 
for LM(C~) of Section 1.6, it is seen that  the total number of rows of program re- 
quired is, for n sufficiently large, less than LM(Ct~a,(~+~,~-~)~ ). Q.E.D. 

From (1.8.1l) and the fact that H(p,  q) < i with equality if and only if p = q = ½, 
it follows from L~( C,O ~ (n/( ( M -  1 ) log2 n) ) that,  for example, 

(1.8.3) For any e > 0, all binary sequences S in MC,~, n sufficiently large, violate 
( 1.8.2); 
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and :more generally, 
(1.8.4) Let S,,~, ~S~ , S,~, . .  • be any infinig~ sequence of di.stb~et finite bina~i~z 

sequences of lengths, respectively, n~, n~, h a , - "  which sat, isfie~ Lo,~(S~) ~-. 
Lax(C~). Then as k goes to infirfity, the ratio of the munber of 0's in S,~ to r~ tei~ds 
to the limit ½. 

We now wish to apply (1.8.4) to programs for Turing maehir, e:s. tn order to do 
this we need to be able to represent the table of entries defining any program as a 
single binary ~quenee. A method is sketched here for coding any program T;,-.M oc* 
eupying the table of at~ N-state M-tape-symbol Turiag machine into a single binary 
sequence C(T~.M) of length ( 1 + e ~ ) N ( M -  I.) log= iN'. 

First, write all the members of the ordered triples entered i~. the table in ba.se4wo 
notation, Mding a sufficient mimber of 0's to the left of the munerMs for all nurnerals 
m be 

(1) ms lo~lg as the base-two numet~al for N + I  if they result from tile first 
member of a triple, 

(2) as long as the base4wo nurnerM for M + 2  if they result from the se(xmd 
member, and 

(3) as long as the base4wo munerM for 2 if they result from the third member. 
The ordy exception t,t this rule is that if the third member of a triple is I or 2, then 

the first member of the triple is not written in base-two notation; ~o bir~ary" sequences 
are genera~d from first members of such triples. L~st, M1 the bii~try sequences that 
have just been obtained are joined together, starting with the binary sequence that 
was geno'ated from the first member of the triple entered at tile interact ion of row 1 
with column I of the table, then with the binaLv sequence generated from the second 
member of the triple -. • , . . .  from the t h i n  member . •. , ~.. from the first member 
of the triple entered at tile intersection of row 1 with column 2, . •. from the second 
member . . .  , . . .  from the third member .-o , and so on across the first row of 
the table, then across the second mw of the t, able, ghea the third, • .. and finally 
across the Nth row. 

The result of all this is a single binarg sequence of length (1 + e,,f)N(M-- 1) log~ N 
(in view of (1.3.1)) from which one can effectively determine the whole table of 
entries which was coded into it, if only one is given the values of N and M. But it is 
possible to code in these last pieces of information rasing only the rightmost 
2( 1 + [log~ N ] ) + 2 (  l -t o [log~ M]) bits of a binary sequence eo~sequently of total 
length 

(1 -+.. ete)N(M -- 1) logaN -1- 2(1 + [log~N]) + 2(1 + [tog~ M]) 

= (1 -t- e. , ' )N(M -- 1) logaN, 

by employing the same trick that  was rased to pack two separate pieces of informa- 
tion into a single binary sequence earlier in this section. 

Thus we have a simple procedure for eodir~g the whole table of entries T~..~ de- 
fining a program of an N-state M-tape-~mbol  Taring machine and the parameters 
N and M of the machine into a binary seque~ee C(T:~a¢) of ( 1[ + e ~ ) N ( M -  1 ) leg~ N 
bits. 

We now obtain the result: 
(l.8.5) Let T~,~(s~)..u, 7'~,~(s~).~, . .  • be an infinite sequence of tables of entries 
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whh:h de~ine programs R~r computing,, respeebively, the distiller gnite bhlary ~ 

With (1.SA) this gives the pro[msition: 
(1.8.6) On the hypot, he, sis of (1.8.5), as ~ gm~.~ to infi~fi~y, the ratio o[ the. number 

of O's i :  C(TL~,,.s~:.u) to its te.ng~h te:~is t~ the limit, ~}. 
The proof of (1.8.5) depends on three fact,s: 
: f.&Ta) There is an effective procedm~ for codh:g the table of entries Ts.~,~ dec 

5ning the program of au N-stg.~te M4ape-symLsfl Tudng machine together with %e 
t,.v<~ paeametm.s N and M i::to a siagte binary sequence C(T,~.~,) of length 
{1 .+- < v ) N ( M - I )  bgeaN. 

(1.&7b) Any binary sequenc~ of lengtti ac t  greater than (1 + ~ , r ) N ( M - t  ) 
log= N can be calculated by a suit.ably programmed N-state M4a~m.symbd *['urh~g 
maehirie. 

(1.8.7c) From a univ~-4fl %lr~ag machine pmgr{mi it is ixg, saible to co~struc~ a 
program %r a Taring machine (with a fb~ed mind.mr r N rows) m take C(T~.u) and 
decode it and to tl/en imitate the cNculatiol~s of the madiine whose, table of e~gries 
T,v,e it then knows, un¢[t it fhn~[ly catcuh~¢es the [a i te  bir~ary seq:m~:lce S whh::h the 
prograax~ being i~,~t~,~ed eMeNa~s, if S exists. 

(1,8.7a) has just bee~ demons%rated, (1 ,8Jb)  was shown in Section 1.6. (The 
cormept d a universal program is due ~o Turi~g [3]-) 

The proof of (1,8.5) follows. From (1.8.7a) and (t.8.7b), 

aad from (t.8.7e) arid the hy:~the~is of (L8+5), 

t t  :follows that Lu(C(T~a ,~ ,o , ) )  ,",; ( i + e~)g,u(S~), which is--Naee the le~gth of 

--simply the condusim~ of (1.8.5). 

.9 The topic of this section is an application of eve~Ttidng ~h~t precedes with 
the exception of Seefior~ 1.7 a~d the first half of Section |.g° (). E, Sham,on sag. 
ge/s~s [1, p. 165] that the stateosym[ml product N M  is a good measure o~ the eal 
eulafing abilifie~ of an N,ostate M.. t, ape%ymbol Turirlg :roach.inc. If one is i~tarested 
m com/pari'nf~ the calculating abilit~ies M la~?l, 7~ux~ni] machCnes who,~e M salues,vm~y 
ovewa firdte range, the resutt~s that fo:Iow suggest tha~) N( M -~ t ) i~ a good measure 
of caleNafing abig~ies. We have :i~:~ a.a ~pplieatkm of a slight generalization of the 
ideas used to prove (1.8~5) : 

t .91 a) Any eahmlation which an N-state M-tape-symbol Turi.~g maehi~m can 
be programmed to perform cart be ~mltated by any N ~.state M 4ape~symbol Iurm, g 
machine satisfying ( 1 + < v ) N ( M -  1) k)g~ N < ( I  + ~ * ) N ' ( M ' -  i )  |oga N '  if it 
is suitably prograanm(~. 

And directly from the asymptot&: formula for L u(C. 2 we have: 
t , t , ; '  

(1.9.Ib) If (1 + ~ec)NgM-1)log~N < (! Jr e ~ , ) N ( M - 1 ) I o ~ N ,  then 
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there exist finite binary sequences which an N'-state M'-tape-symbol Turing ma- 
chine can be programmed to calculate and which it is impossible to program an 
N-state M-tape-symbol Turing machine to calculate. 

As (1 -t- e~)N(M- 1) log2N = ((1 + e j ) N ( M - 1 ) )  log2 ((1 + e j ) N ( M - l ) )  
and for x and x ~ greater than one, x log~ x is greater (less) than x' log2 x' according as 
x is greater (less) than x', it follows that the inequalities of (1.9.1a) and (1.9.1b) 
give the same ordering of calculating abilities as do inequalities involving functions 
of the form (1 -b eN)N(M-1). 

Part 2 
2.1 In this section we return to the Turing machines of Section 1.1 and add to 

the conventions (1.1A), (lAB) and (1.1C), 
(2.1D) An entry (i,j) in the pth row of the table of a Turing machine must 

satisfy I i--p [ _~ b. In addition, while a fictitious state is used (as before) for the 
purpose of halting, the row of the table for this fictitious state is now considered to 
come directly after the actual last row of the program. 

Here b is a constant whose value is to be regarded aS fixed throughout Part 2. 
In Section 2.2 it will be shown that b can be chosen sufficiently large that the Turing 
machines thus defined (whichwe take the liberty of naming "bounded-transfer Turing 
machines") have all the calculating capabilities that are basically required of Turing 
machines for theoretical purposes (e.g., such purposes as defining what one means 
by "effective process for determining. . .") ,  and hence have calculating abilities 
sufficient for the proofs of Part 2 to be carried out. 

(2.1D) may be regarded as a mere convention, but it is more properly considered 
as a change in the basic philosophy of the logical design of the Turing machine (i.e., 
the philosophy expressed by A. M. Turing [3, Sec. 9]). 

Here in Part 2 there will be little point in considering the general M-tape-symbol 
machine. I t  will be understood that we are always speaking of 3-tape-symbol 
machines. 

There is a simple and convenient notational change which can be made at this 
point; it makes all programs for bounded-transfer Turing machines instantly re- 
tocatable (which is convenient if one puts together a program from subroutines) 
and it saves a great deal of superfluous writing. Entries in the  tables of machines 
will from now on consist of ordered pairs (i', f ) ,  where i' goes from - b  to b and 
j '  goes from 1 to 5. A "new" entry (it,j ') is to be interpreted in terms of the functiom 
ing of the machine in a manner depending on the number p of the row of the table 
it ~S in; this entry has the same meaning that the "old" entry (p+i', f )  used to 
have. 

Thus, halting is now accomplished by entries of the form (k, j) ( 1 <: k < b) in 
the kth row (from the end) of the table. Such an entry causes the machine to halt 
~after performing the operation indicated by j. 

2.2 In this section we attempt to give an idea of the versatility of the bounded- 
transfer Turing machine. It is here shown in two ways that b can be chosen suffi- 
ciently large so that any calculation which one of the Turing machines Of Section 1.1 
can be programmed to perform can be imitated by a suitably programmed bounded- 
transfer Turing machine. 
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As the first proof, b is taken to be the mmd)er of rows in a 34ape-symbol universal 
Taring machine program t'or the machines of Section 1,1. This universal program 
(with its format cha~ged to that of thv N)l.inde(t-{~FaD~<~fer Turi~g machines) or:ca,- 
pies the las~ rows of a, program fi)r a boanded4rans%r Turing m~chh~e, a. progrmn 
whi(h is maiaty devoied to writing out ou the tape the inform~tion which wilt ena- 
ble the aniversal program to hnigate a~y c;fleulation which any one of the Taring 
machines of Section 1.1 cau be t3~x)gramm('d to perform. One ~x:~w ef the progr~m is 
used to write out eacl~ symbol of {his informatiou ( as in the program i~ Seetkm 1.7), 
and control passes straight through the program row after mw u~til it. reaches the 
universal program~ 

Now fer the second p~x)of, To program a boundedotransfer Taring machine i~x such 
a manner that it imitates the calculations per:formed by a Taring machin.e ef Seetiou 
1.1, consider alternate squares o~ the tape of the bo~mded-transfer Turing m~ehine 
to be the s(ttl~l'es of the ~ape of the machine being imitated. Chus 

¢ 

is imitated by 

After the operatiou of a state ( i .e ,  write 0, write L write blank, shift tape left, 
shift tape right) has been imitated, as many l's as the ha:tuber of the next state to be 
imitated are written on the squares of the tape of the bounded4rm~sfer Taring 
machine which are ~mt used to imitate the sqtmres of the other machine's tape, start~ 
ing on the square immediately to the right of the one on which is t/he se~mner of the 
boanded-tr~msfer Taring machine. Thus if in the foregoing situation the ne×:t state 
to be imit~ted is state number three, gi~e~ the ta:~:~ of the bounded4rans:fer Tari~tg 
machine becomes 

CIZT,2iZ21 I I;2 Z£;£ i i  222 . . . .  

The rows of the table whict~ cm~se the bounded4ransfer Taring machine to do the 
foregoing (type I rows) arc i~terwoven or braided with two other Wpes of rows. The 
fit~t of these (type II rows) is used for the sole purpose of patt ing the bounded- 
transfer Tufing machine back in its i~dtial state (row l of t~he t~~ble; this row is a type 
[II  row). They appear (as do the other two Vpes of rows) periodically thmagho~%t 
the table, and each of them does nothing N~t graf~s%r control to the preceding one, 
The second of these ( Vpe I I t  rows) ~ rve  m pass control back in the other direetkm; 
each time control is about to pass a block of Wpe I rows that imitate a particular 
state of the other machine while traveling through type ! I I  rows, the type I H  rows 
erase the rightmost of the l 's  us~:i to write ()at the mlmber of the ~mxt state to be 
imitated. When finally none of these plaee4narking l 's  is left, control is passe(l to the 
group of type I rows that was about t~) be passed, which then proeeeds to imitate the 
appropriate state of the Taring machine of Section 1.1. 

Thus the obstacle of the upper bound on the length of transfe~s in bounded~trans.~ 
fer TuVmg machines is overeome by passing up and down the t~fl:)le by small jumps, 
while keeping track of the prog~vss to tAe desired destination is achieved by sub. 
tracting a mdt from a count writte~ on the tape just prior to departare. 

Although bounded4ra~sfer Turing machines have been shown to be versatile, it 
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is not true that  as the number of states goes to infinity, asymptotically 100 percent 
of the bits required to specify a program also serve to specify the behavior of the 
bounded-transfer Turing machine. 

2.3 In this section the following fundamental result is proved. 
(2.3.1) L(C,~) ,--, a'n, where a* is, of course, a positive constant. 
First it is shown that  there exists an a greater than zero such that :  
(2.32) L(Cn) ~_ an. 
I t  is clear tha t  there are exactly ( (5)  ( 2b + 1) ) 3N different ways of making entries 

in the table of an N-state bounded-transfer Turing machine; tha t  is, there are 
2 ((31°~(1°b+6))~) different programs for an N-state bounded-transfer Turing machine. 
Since a different program is required to have the machine calculate each of the 2 ~ 
different binary sequences of length n, it can be seen that  an N-state bounded- 
transfer Turing machine can be programmed to calculate any binary sequence 
of length n only if 

( 3 1 o g ~ ( 1 0 b + 5 ) ) N  > n  or N > ( 1 / ( 3 1 o g ~ ( i 0 b + 5 ) ) ) n .  

Thus one can take a = (1 / (3  log2 (10b + 5) ) ) .  
Next it is shown that :  
(2.3.3) L(C,~) + L(C,~) ~ L(C~+~). 
To do this we present a way of making entries in a table with at  most 

L(C~) + L(C,~) rows which causes the bounded-transfer Turing machine thus pro- 
grammed to calculate any particular binary sequence S of length n+m. S can be ex- 
pressed as a binary sequence S r of length n followed by  a binary sequence S t~ of 
length m. The table is :then formed from two sections which are numbered in the  
order in which they are encountered in reading from row 1 to the last row of the table. 
Section I consists of at most L (C . )  rows. I t  is a program which calculates S'. Section 
II  consists of at  most L(Cm) rows. I t  is a program which calculates S". I t  follows 
from this construction and the definitions that  (2.3.3) holds. 

(2.3.2) and (2.3.3) together imply ( 2.3.1 ). This will be shown by a demonstration 
of the following general proposition: 

(2.3.~) Let  At ,  A2, Aa, . .  • be an infinite sequence of natural numbers satis- 
fying 

(2.8.5) A,~ + Am > A~+m. 
Then as n goes to infinity, (A./n) tends to a limit from above. 

For all n, A .  _> 0, so that (A./n) >_ 0; tha t  is, { (A,/n) } is a set of reals bounded 
from below. I t  is concluded that  this set has a greatest lower bound a*. We now show 
that  lhn.-~ (A,,/n) = a*, Since a* is the greatest lower bound of the set { (A./n) }, 
for any e greater than zero there is a d for which 

(~.8.6) (An~d) < a* + e. 
Every natural number n can be expressed in the form n = qd + r, where 

0 _< r < d, From (2.3.5) i t e a n  be seen that  for any n l ,  n2, n3, .. • , nq+l, 

kffil 

Taking nk = d ( k  = 1, 2, . .  • , q) and nq+l = r in this, we obtain 

qAd + A,  ~ Aq~+~ = A,, , 

which with (2.3.6) gives 
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which implies 
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qd (a* + e) = (n -- r)(a* "Jr- e) > A .  - A~ 

( 1  - r /~)(a* % e) >_ (A,,/n) - (A~/n), 

a* -{- e >_ ( A,/n) -[- e,, 
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1 ~  (Ao/n)  < a* + e. 

Since e > 0 is arbi trary,  it cau be concluded that  

F'~ (A,,/n) ~ a*, 

which with the fact  t ha t  (A~/n) :> a* for all n gives 

lira ( A,,/n ) = a*. 
n*,p¢~ 

2.4 In Section 2.3 an asymptotic formula analogous to a part of Section 1.6 was 
demonstrated; in this section a result is obtained which completes the anaMgy. This 
result is most convemently stated with the aid of the notation B(m) (where ra is a 
natural number)  for tile binary sequence which is the numeral representing m in 
ba~e-two notation (e.g., B(6)  = 110). 

(2.4.1) There exists a constant c such that those binary sequences S of length n 
satisfying 

(~ .~ .e )  

L(S) <_ L(C,,) -- L (B(L(C, ) ) )  - [log~L(B(L(C,~)))] 

- L ( C ~ , )  - [ l o g ~  L ( C ~ ) ]  - c 

are less than  2 "-~ in number. 
The proof of (2.4.1) is by contradiction. We suppose that those S of length n 

satisfying (2.4.2) are 2"-*' or more in number and we conclude that  for any par- 
ticular binary sequence S -  of length n there is a program of at most L(C,,)-1 
rows that causes a bounded-transfer Turing machine to calculate S- .  This table 
consists of 11 sections which come one after the other. The first section consists of a 
single row which moves the tape one square to the left ( 1,4 1,4 1,4 will certainly 
do this). The  second section consists of exactly L(B(L(C,,) ) ) rows; it  is a program 
for computing B(L(C,,))  consisting of the smallest possible number of rows. The 
third section is merely a repetition of the first section. The  fourth section consists 
of exactly [log~ L(B(L(C,,)))] rows. I ts  function is to write out on the tape the 
binary sequence which represents the number L(B(L(C~))) in base-two notation. 
Since this is a sequence of exactly [log~ L(B(L(C,,) ))] bits, a simple program exists 
for calculating it  consisting of exactly [log~ L(B(L(C,,)))] rows each of which 
causes the machine to write out a single bit of the sequence and then shift the tape a 
single square to the left (e.g., 0,2 1,4 1,4 will do for a 0 in the sequence). The 
fifth section is merely a repetition of the first section. The sixth section consists of 
at most L(C~) rows; it is a program consisting of the smallest possible number of 
rows for computing the sequence S R of the m rightmost bits of S-.  The  seventh 
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section is merely a repetiti(m of the first se~fiom The eighth seedo~ co~si ts of 
exactly [log2 L(C.~)] mw,~. Its functicm i:~ to writx out or~ the t~pe the })im~ry se~ 
quenee which represe~ts the mimber L(C~) hi base-two r~otatiom Sh~c(, thi:~ in a 
seque~cc of exactly {log~ L(C~)] bits, a ~imple program exist.~ for ,alculad~g it 
consistit~g of exacdy [log~, L((,'~,) I rows each of which caus~s the ma4.hi~m to write 
out a single [)it of the seque~.ee and the~ shift, the tape a single :~quare to the teft. 
The ninth section is merely a repetition of the first s~:tiom The tenth ~,ectio~ co~- 
sists of at most ao~ mm~y rows as the expresskm (m t.he right-harM side of t, he b~- 
eqtmlity (2,4.2), I t  is a program for calculati~g om~ (out of ~ot bss tb~n 2 ....... ) 
of the sequm~.ces of le~gth n satisfying (2.4.2) (which one it is depemts oa S-  h~ a 
maturer which will become clear from the diseussio~l of tJ~e eleventh s(<tio~; for 
now we merely denote it, by So). 

We ~ow (x~me lx~ the Imsg and eruciM eleve~lth se{%ion, which eon~si.st~s b~ d</ini~ i<,, 
of (c -- 6) rows, ~md which therefore brings the total number of rows tip t/;~ at m o s t  

I + L( B( L( C,) ) ) + l + [loge L( B( L( C~) ) )] ÷ 1 + L(C=) -5 1 + [loge L(C~)] 
+ 1 + (the expression~ on the right-hm~d side of the inequ:diW (2.4.2)) + ( c -  6) 
= r ( c o ) -  1. 

When this section, of the program takes over, the mm~bers and sequenees L(C~), 
L( B( L( (;% ) ) ), S n, L(C,,), S ~" are wfitteno-in the at:n~ve order.-.<m the tape. 
Note, first of all, that  section 1l can: (1) compute the vMue v of the righg-hm~d 
expression of the ineqtmlity (2,4,2) from ~his data, (21 fi~d the value of n from this 
data (simply by counting the number of bits i~ the seque~ee S~'), and (3) ti~d the 
wdue of m from this data (simply by counting the m~mber of bits in S~). Using it, s 
knowledge of v, m and n, section 11 thm~ computes from the sequence S ~' a ~ew 
sequence S t '  which is of le~gth (n o- m), The maturer in which it, does this iv 
discussed in the next paragraph. Filmily, sectio~ 11 ~tjoins the sequence S e~ to 
the right of S ~',, positions this sequence which is ir~ fact S ~ pro~:~:~rly for it tx) be 
able m be regarded calculated, cleans up gh~ resg of the t~ape, m~d hNts scarmb~g 
the square just t*~ the right of S~. S" ha~s bcum eale@~t, ed, 

To finish the proof of (2.4,11 we must now (rely indicate how section 11 arrives 
at S L' (of length (n - m)) from v, m, n and S L. (And it must be here that. it, is 
made clear how the ct~oiee of S ~' depends on S<)  By g~ssumptioa, S c ~'~tisfie:s 

(2.4.8) L(S ~) ~ v and S ~' is of length n. 
Also by assumption there are at le~~t 2 ~'~ seque~mes which satisfy (2,4.a)~ 

Now section 11 contains a procedure which when gh~en any one of ~ome partic~dar 
~\erially ordo'd set ,~Q~, 4 2'*"'~' sequences satis']~ling (2.4.;/), wilt find the ordinal 
number 4 its position in ,,Q~,. A~d the number of the position of S c i:n ,,(2,, is the 
number of the position of S z~ in the s a tu rn  ordering of ~flt Nna~" sequences of 
length (n - m) (i.e., 000...00, 000...01, (K~1-.-10, 0(10.. . l l ,  . . . ,  1 t l . . . 0 0 ,  
111.7 '0t ,  111.. .10, 111. .1 .1) .  In the t)~ext a.nd finM p~m~graph of this p~)of, 
the foregoing itMicized sentence is explained. 

I t  is sufficient m give here a procedure for serially eMeulating the members of 
~(~, in order. (Tha t  is, we define a serially ordered ,~Q~ for which there is a procedure.) 
By assumption we know that the pt~x:lieate which is satisfied by M1 members of 
,~Q~ ~ nameJy, 

( g ( ' " )  ~ v ) & ( ' "  i sof  length n),  

is satisfied by at legist 2 ....... sequences, ti~, should also be elear to the reader on the 
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basis of some background in Turing machine and recursive fuilction theory (see 
~specialty Davis [4], where recursive function theory is developed from the con- 
cept of the Turing machine) that  the set Q of 

all natural numbers of the ]brm T~3~5 e, where e is the natural number represented 
in base-two notation by a binary sequence S satisfying 

(L(S)  _< v) &(S is of length n) 

is reeursively enumerable. Let T denote some particular Turing machine which is 
programmed in such a manner that  it recursively enumerates (or, to use E. Post 's  
term, generates) Q. The definition of ,~Q~ can now be given: 

~Q~ is the set of binary sequences of le~lgth n which represe~t i~ bLase-two nota- 
tion the exponents of 5 ia the prime factoriz~tion of the first 2 ....... members o[ Q 
ge~erated by T whose prime factoriz~tions have 2 with an exponent of n and 3 
with ~n exponent of v, and their order in :,~Q~ is the order in which T generates 
them. Q.E.D. 

It can be proved by contradiction that  the set Q is Imt reeursive. For were Q 
~.ccursive, there would be ~ program which given any finite binary sequence S 
would calculate L(S). Hence there would be a program which given any natural 
~lumber n would calculate the members of C,~. Giving n to this program can be done 
by a program of length [log2 n]. Thus there would be ~ program of length [log ~ n] 
+ c which would calculate an dement  of C,,. But we know that  the shortest program 
for calculating ~n element of C,~ is of length Na*n, so that  we would have for n sufii~ 
cieBtly large an impossibility. 

It should be emphasized that if L(C,~) is an effectively computable function of n 
then the method of this section yields the following far stronger result: 

There exists a constant c such that those binary sequences S of length n 
satisfying L(S) < L(C,~) - L(Cm) - c are less than 2 ~-'~ in number. 

2.5 The purpose of this section is to investigate the behavior of the right- 
haiLd side of (2.4.2). We start by showing a result which is stronger for n sufficiently 
large than the inequality L(C.)  < n, namely, that  the constant a* in the asymptotic 
evaluation L(C,~) ~-~ a*n of Section 2.3 is less than 1. This is done by deriving: 

(2.5.1) For any s there exist n ~nd m such that 

( L( C.~) _< L( C~) + L( Cm) + c, 

(n + m) is the smallest integral solution x of the inequality, 

s < x + [ l o g ~ x ] -  1. 
From (2.5.1) it will follow immediately that  if e(n) denotes the function satisfy- 

ing L( C~) = a*n + e(n) (note that  by Section 2.3 (e(n)/n) tends to O from above 
as n goes to infinity), then for any s, L(C.~) < L(C~) + L(C,,,) + c for some n 
and m satisfying (n + m) = s - ( 1 + e~) loge s, which implies 

a*s<a*(s--  (l+e~)log2s) +e(n)  +e(m) or (a*+e~)log2s~e(n)  +e(m). 

Hence as n and m are both less than s and at least one of e(n), e(m) is gre~ter 
than (a* + e~) logs s/2, there are an infinity of n for which e(n) _> (a* + E~) log~ n/2. 
That is, 

(2.5.2) 1 ~  L(C,) - a*n 1 ~ --. 

a logs n - 2 
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From (2.5,2) with L(C . )  <_ n follows immediately 
(~.5.3) a* < 1. 
The proof of (2.5.1) is presented by examples. The notation T , U  is used, where 

T and U are finite binary sequences for the sequence resulting from adjoining U 
to the right of T. Suppose it  is desired to calculate some finite binary sequence S of 
length s, say S = 010110010100110 and s = 15. The smallest integral solution x of 
s _< x -t- [log2 x] - 1 for this value of s is 12. Then S is expressed as S ' . S  r where S r 
is of length x = 12 and S r is of length s -  x = 15 - 12 = 3, so that  S '  = 010110010100 
and S ~ = 110. Next  S' is expressed as SL .S  R where the length m of S L satisfies 
A . B ( m )  -- S ~ for some (possibly null) sequence A consisting entirely of O's, and 
the length n of S ~ is x - r e .  In  this case A , B ( m )  = 110, so that  m = 6, S L = 010110 
and SR = 010100. The final result is that  one has obtained the sequences S t and S R 
from the sequence S. And-- this  is the crucial point-- if  one is given the S L and S r¢ 
resulting by  the foregoing process from some unknown sequence S, one can reverse 
the procedure and determine S. Thus suppose 8 r = 1110110 and S" = 01110110000 
are given. Then the length m of S L is 7, the length n of S R is 11, and the sum x of 
m and n is 7 + 11 -- 18. Therefore the length s of S must  be s = x + [logs x] - 1 
= 1 8 4 5 -  1 = 22 .ThusS  = SL,S~.Sr, where Sr is of length s - x = 2 2 -  18 = 4, 
and so from A . B ( m )  = ~ro r  0 ,B(7)  = S tone  finds S r = 0111. I t  is concluded that  

S = SL*SR*S ~ = 1110110011101100000111. 

(For  x of the form 2 h what precedes is not strictly correct. In such cases s may equal 
the foregoing indicated quanti ty or the foregoing indicated quanti ty minus one. 
I t  will be indicated later how such ca~es are to be dealt with.) 

Let  us now denote by F the function carrying (S L, S ~) into S, and by F~ ~ the  
function: carrying S into S ~, defining F~L ~ similarly. Then for any particular binary 
sequence S of length s the program of Figure 2 consists of at most  

1 + L(F~L~(S)) + 1 + L(F-~R~(S)) -b 2 + (c - 4) _< L(C,,) + L(C,,)  + c 

rows with m + n  = x being the smallest integral solution of s _< x -}- [log2 x] - 1. 
As this program causes S to be calculated, the proof is easily seen to be complete. 

The second result is: 
($.5.4) Let  ](n)  be any effectively computable function tha t  goes to infinity 

with n and satisfies f ( n  + 1) - f ( n )  = 0 or 1. Then there arc an infinity of dis- 
t inct nk for which L( B( L(  C,,)  ) ) < f (n , ) .  

This is proved from (2.5.5), the proof being identical with that  of (1.7.5). 
(2.5.5) For any positive integer p there is at least one solution n of L ( C , )  = p. 

Let the nk satisfy L(C~k) = ] - l (k ) ,  where f -s(k)  is defined to be the smallest value 
1 k of j for which f ( j )  = k. Then since L( C,) <_ n, f -  ( ) <_ n , .  Noting that  f-~ 

is an effectively computable function, it is easily seen that  

L ( B ( L ( C , k ) ) )  L ( B ( f - ~ ( k ) ) )  <_ L ( B ( k ) )  + c <_ [log~ k] + c. 

Hence, for all sufficiently large k, 

L(B(L(C, ,~) ) )  ~_ [log~ k] + c < k = f ( f -~(k) )  ~_ ](nk). Q.E.D. 

(2.5.4) and (2.4.1) yield: 
(~.5.6) Let  f ( n )  be any effectively computable function tha t  goes to infinity- 

with n and satisfies f (n  + 1) - $(n) = 0 or i. Then there are an infinity of dis- 
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1,4 1,4 1,4 }Section I 
Section I I  : 
L(FL-I(S)) rows 

1,4 1,4 1,4 }Section I I I  
1 Section IV: 

L(Fn-I(S)) rows 

Section V: 
c - 4  rows, by definition 

FIG. 2 
Section I I  is a program with the smallest possible number of rows for calculating FCI (S ) .  
Section IV is a program with the smallest possible number of rows for calculating FR -1 (S). 
Section V is a program that  is able to compute F. I t  computes F(FL-I(S),  FR-~(S)) = S, 

positions S properly on the tape, cleans up the rest of the tape, positions the scanner on the 
square lust  to the right of S and halts. 

* Should x be of the form 2~, another section is added at this point to tell Section V which 
of the two possible values s happens to have. This section consists of two rows; i t  is either 

1,4 1,4 1,4 1,4 1,4 1,4 
1,2 1,2 1,2 or 1,3 1,3 1,3. 

tinct nk for which less than 2n~-i (~) binary sequences S of length nk satisfy L(S) 
L(Cn~:) -- (a $ + ek)f(nk). 

Part 3 

3,1 Consider a scientist who has been observing a closed system that  once every 
second either emits a ray of light or does not. He summarizes his observations in a 
sequence of O's and l 's  in which a zero represents " ray  not emit ted" and a one 
represents " ray  emitted." The sequence may start  

0 1 1 0 1 0 1 1 1 0 - . .  

and continue for a few thousand more bits. The scientist then examines the se- 
quence in the hope of observing some kind of pattern or law. What  does he mean 
by this? I t  seems plausible that  a sequence of O's and l 's  is patternless if there is no 
better way to calculate it than just by writing it all out at once from a table giving 
the whole sequence: 

My Scientific Theory 
0 
1 
1 
0 
1 
0 
1 
1 
1 
0 

This would not be considered acceptable. On the other hand, if the scientist should 
hit upon a method by which the whole sequence could be calculated by a computer 
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whose program is short compared with the sequence, he would certainly not cot~- 
sider the sequence to be entirely pattemless or random. And the shorter the pro- 
gram, the greater the pattern he might ascribe to the sequence. 

There are many genuine parallels between the foregoing and the way scientists 
actually think. For example, a simple theory that  accounts for a set of facts is 
generally considered better or more likely to be true than one that  needs a large 
number of assumptions. By "simplicity" is not meant "ease of use in making pre- 
dictions." For although General or Extended Relativity is considered to be the 
simple theory par excellence, very extended calculations are necessary to make 
predictions from it. Instead, one refers to the number of arbitrary choices which have 
been made in specifying the theoretical structure. One naturally is suspicious of a 
theory the number of whose ~rbitrary elements is of an order of magnitude com- 
parable to the amount of information about reality t/hat it accounts for. 

On the basis of these considerations it may perhaps not appear entirely arbitrary 
to define a patternless or random finite binary sequence as a sequence which in 
order to be calculated requires, roughly speaking, at least as long a program as any 
other binary sequence of the same length. A patter:~fless or random infinite binary 
sequence is then defined to be one whose initial segments are all random. In making 
these definitions mathematically approachable it is necessary to specify the kind of 
computer referred to in them. This would seem to involve a rather arbitrary choice, 
and thus to make our definitions less plausible, but  in fact both of the kinds of 
Turing machines which have been studied by such different methods in Parts  I 
and 2 lead to precise mathematicM definiti(ms of patternless sequermes (namely, 
the patternless or random finite binary sequences are those sequences S of length n 
for which L(S) is approximately equal to L(C,,), or, fixing M, those for which 
LM(S) is approximately equal to L~(C,,)) whose provable statistical properties 
start with forms of the law of large numbers. Some of these properties will be es- 

1 tablished in a paper of the author to appear. 
A final word. In scientific research it is ge~:mrally considered better for a pro- 

posed new theory to account for a phelmme~mn which had not previously been 
contained in a theoretical structure, before the discovery of that phe~mmenon rather 
than after. It  may therefore be of some interest to mention that  the intuitive con- 
siderations of this section antedated the investigations of Parts 1 and 2. 

3.2 The definition which has just been proposed 2 is one of many attempts which 
have been rome to define what one means by a patternless or random sequence of 
numbers. One of these was begun by R. yon Mises [5] with contributions by A. Wald 
[6], and was brought to its culmination by A. Church [71. K. R. Popper iS] criticized 
this definition. The definition given here deals with the concept of a patternless 
binary sequence, a concept which corresponds roughly in intuitive intent with the 
random sequences associated with probability ½ of Church. However, the author 

The author has subsequently learned of work of P. Martin-IASf ("The Definition of Random 
Sequences," research report of the Institutionen for F6rsiikringsmatematik och Matematisk 
Statistik, Stockholm, Jan. 1966, 21 pp.) establishing statistical properties of sequences defined 
to be patternless on the basis of a type of machine suggested by A. N. Kolmogorov. Cf. foot- 
note 2. 

2 The author has subsequently learned of the paper of A. N. Kolmogorov, Three approaches 
to the definition of the concept "amount of information," Problemy Peredachi lnforrnatsii 
[Problems of Transmission of hfformation], I, 1 (1965), 3-11 [in Russian], in which essentially 
the definition offered here is put forth. 

~! if( 
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does ~ot foitow the basic philosophy of t, he yon i~.[ises-Watd-Church de~i~ition; 
instead,  the author  is i~ accord with the opinion of Popper  [8, See. ;57, footnote 1] : 

[ come here to ~t~e poi~t where l failed to carry out f:ully my intuitive programme~.-.that of 
~~naIysi~g randomness; as far a:s ig is ~)ssible within the region of finite sequences, and of pro- 
ceedi;~g to infini.~e rderence sequences (i~ which we need limits of relative frequencies) oniy 
afterwards, ~'ith the aim of obtaiai~g a theory in which the existence of frequemey limits fol- 
lows from the random character of the sequence. 

Xo~ethetess the methods given here are similar to t, laose of Church;  the concept of 
effe,.~tive computabi l i ty  is here made  the central  ot~e. 

A discu:asion can be Nven of jus t  how pat~.ernless or random the seqtmnces given 
i~a this paper apt:mar to be for practical purposes. How do they perform wheI~ st.lb ~ 
~ee~ed to statist ical  ~ests of randomness? Can they  be used in the Monte  Carlo 
method? Here the somewhat ta~tatizing remark of ,l. you N e u m a n n  [9] should 
perhaps be ment ioned:  

Any o~e who cor~iders arithmetical methods of producing rat~dom digits is, of course, in a 
s~ate of sire }'or, as has tmen pointed o~t several times, there is no such thi~g as a random 
numbe>~.-thers are only me~hods to produce random numbers, and a strict arithmeticM pro~ 
cedars of eon~e is not such a method~ (It is true that a problem that we suspect of being solv- 
aMe by random methods may be sotvable by some rigorously defined sequence, but this is a 
deeper mathematical q~estior~ tha~ we can ~mw go into.) 

A c]cnmdedgtmen~. The author  is i~debted to Profes~)r Donald  h)velm~d of New 
York University, whose construct ive criticism enabled this paper  to be much 
d e a r e r  than it  wo:utd have been otherwise. 

~+:c~:~v~:~;~ (k:~roseR, 1965; ~,:viss, D MM~c~'L t968 
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