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Chapter 4
Text Preprocessing

Abstract This chapter starts the process of preparing text data for analysis. This 
chapter introduces the choices that can be made to cleanse text data, including 
tokenizing, standardizing and cleaning, removing stop words, and stemming. The 
chapter also covers advanced topics in text preprocessing, such as n-grams, part-
of- speech tagging, and custom dictionaries. The text preprocessing decisions 
influence the text document representation created for analysis.

Keywords Text preprocessing · Text parsing · n-grams · POS tagging · Stemming 
· Lemmatization · Natural language processing · Tokens · Stop words

4.1  Introduction

By the end of the planning stage, the data should be collected, and the goal of the 
analysis should be well defined. After completing the planning stage, the next 
step is to prepare the data for analysis. Each record of the collected text data 
should have a unique identifier that can be used to refer to that instance. In text 
analytics, these instances are known as documents. A document is typically made 
up of many characters. The many documents make up a document collection or 
corpus. Characters are combined to form words or terms in a given language. 
These words are the focus of our analysis, although groupings of terms can also 
be the chosen unit of analysis, as described in this chapter. The collection of 
terms is sometimes called the vocabulary or dictionary. Figure 4.1 illustrates the 
components of our text data.

Let’s consider an example of a document collection in which ten people were 
told to envision and describe their dog. The dog could be wearing dog clothes. Some 
of these people describe their own dogs, while others describe a fictional dog. The 
document collection is shown in Fig. 4.2.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_4&domain=pdf
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4.2  The Preprocessing Process

Much of the text preparation and preprocessing methods have their roots in natural 
language processing. Text preprocessing takes an input of raw text and returns 
cleansed tokens. Tokens are single words or groups of words that are tallied by their 
frequency and serve as the features of the analysis.

The preprocessing process includes (1) unitization and tokenization, (2) stan-
dardization and cleansing or text data cleansing, (3) stop word removal, and (4) 
stemming or lemmatization. The stages along the pipeline standardize the data, 
thereby reducing the number of dimensions in the text dataset. There is a balance 
between retained information and reduced complexity in the choices made during 
the process. This process is depicted in Fig. 4.3.

Each step removes unnecessary information from the original text. Proper pre-
processing of text data sets up the analysis for success. In text analysis, far more 
time is spent in preparing and preprocessing the text data than in the analysis itself 
(Dumais et al. 1998). Diligent and detailed work in cleansing and preprocessing 
makes the analysis process smoother.

4.3  Unitize and Tokenize

The first step involves the choice of the unit of text to analyze and the separation of 
the text based on the unit of analysis. This unit could be a word; however, in other 
cases, it may be a grouping of words or a phrase. Single words are the simplest 
choice and make a good starting point. It is difficult for a computer to know where 
to split the text. Fortunately, most text mining software contains functions to split 
text, because computers do not naturally sense when punctuation designates the end 
of a word or sentence. For example, apostrophes could indicate the end of a token, 
or not, depending on the use (Weiss et al. 2010).

In our example, tokenization is done under the assumption of bag-of-words 
(BOW), meaning that the grammar and ordering of the text in a document is not 

Terms

Documents

Document Collection

Fig. 4.1 Hierarchy of 
terms and documents
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considered in building the quantitative representation of the qualitative text data. 
First, we analyze the text in the document collection at the word or term level. For 
instance:

Document 1: My Favorite Dog Is Fluffy and Tan There are seven words in this 
document. Next, through tokenization, we separate the text into a more usable form, 
known as tokens.

Fig. 4.2 Example document collection

4.3 Unitize and Tokenize
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Document

1. Unitize & Tokenize
Tokens • N-grams

2. Standardize & Cleanse
Standardize Case • Remove Numbers, 

Punctuation and Special Characters

3. Stop Word Removal

Common Lists • Custom Dictionaries

4. Stem or Lemmatize
Stemming • Lemmatizing • 

Part of Speech Tagging

Tokens

Fig. 4.3 The text data pre-processing process

Based on Document 1, we have eight tokens. Each of the seven words is a token, 
in addition to the period at the end of the sentence. The tokenized documents are 
shown in Fig. 4.4. Each bracket in the documents represents a token.

4.3.1  N-Grams

N-grams are an alternative to single words in the tokenization process. N-grams are 
tokens; they are consecutive word sequences with length n. For instance, bigrams 
are tokens composed of two side-by-side words; a single word is known as a uni-
gram. N-grams retain information about the co-occurrence of words, because they 
group adjacent words into the same token.

Visualize the process as a picture frame that contains n words. Initially, the frame 
rests over the first n words. This counts as a token. The frame then moves over one 
word resulting in the exclusion of the first word. This is the second token. This pro-
cess repeats for the length of the text (Struhl 2015). We will demonstrate this pro-
cess with n equal to two, known as a bigram. Again, we use Document 1.

4 Text Preprocessing
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Fig. 4.4 Tokenized example documents

The first token is:
My favorite  dog is fluffy and tan.

The second token is:
My favorite dog  is fluffy and tan.
The final token is:
My favorite dog is fluffy and tan.
The bigram representation of Document 1 is:

4.3 Unitize and Tokenize



50

My favorite

favorite dog

dog is

is fluffy

fluffy and

and tan

tan

This procedure can be used to create n-grams for higher values of n.

4.4  Standardization and Cleaning

First, we want to standardize and clean the tokens. These transformations level the 
playing field by making the terms in each of the documents comparable. For 
instance, we do not want character, character, and Character to be considered sep-
arate items just because one has a comma, and another has an upper case C. This 
standardization and cleaning prevents this possibility from occurring.

Our first step is to convert the terms in the text to lower case. In this step, any 
capital letters are converted to lower case. Without this conversion, the first token in 
Document 1, My, and the first token in Document 7, MY, would erroneously be 
considered two different terms.

Following this conversion, we want to remove numbers, punctuation, and special 
characters. In Document 9, we will remove the numbers 3 and 2. We will also 
remove any punctuation at the ends of sentences, such as periods and exclamation 
points. We remove periods from Documents 1, 3, 4, 5, 6, 7, and 10. We also remove 
an exclamation point from Document 9 and an ampersand from Document 6. In this 
document collection, we have one special character, a ♥ in Document 4, which is 
removed. In real-world text data, there may be additional characters and tokens to 
clean. For instance, in some text documents, there may be extra spaces, such as 
white space. These are also eliminated at this stage. The results of cleansing and 
standardizing our text data appear in Fig. 4.5.

4.5  Stop Word Removal

Next, we want to drop frequently used filler words, or stop words, which add no 
value to the analysis. According to the Oxford English Dictionary, and, the, be, to, 
and of are the most common words in the English language.1 In the case of text 
analysis, we remove common terms because, although common terms such as 

1 https://en.oxforddictionaries.com/explore/what-can-corpus-tell-us-about-language
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Fig. 4.5 Cleansed and standardized document collection

these serve a grammatical purpose, they provide little information in terms of 
content (Salton 1989; Wilbur and Sirotkin 1992).

A collection of stop words is known as a stop list. Alternatively, this collection 
of words can be known as a dictionary. There are several stop lists such as those 
presented in Chaps. 13, 14, 15 and 16 that are utilized by software programs for 
text analytics. These lists include many different languages and methods.2 The 

2 Stop lists in more than 40 languages can be found at http://www.ranks.nl/stopwords

4.5 Stop Word Removal
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Fig. 4.6 Documents after stop word removal

SMART information retrieval system, introduced by Salton (1971), has a popular 
stop word list containing 571 words.3

In our example, we will use the SMART dictionary (Salton 1971) to identify 
and remove stop words from our documents. The following stop words were 
removed from the documents: a, and, has, he, is, my, the, and was. The resulting 
document collection after stop word removal is displayed in Fig. 4.6. An alternative 
to using existing stop word dictionaries is to create a custom dictionary.

3 The stop word list based on the SMART information retrieval system can be found at http://www.
ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
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4.5.1  Custom Stop Word Dictionaries

Standard stop word dictionaries eliminate many of the most common words in a 
given language, but sometimes we also want to drop domain- or project-specific 
words or tokens. In this case we can build a custom dictionary to complete this task. 
Often, projects will have topic-specific words that occur frequently but add little 
value. In the documents in our example, we may consider adding the term dog to a 
custom stop list. Given that the ten respondents were told to describe their dog, this 
word may not be informative in the analysis. Since one respondent described both 
a cat and a dog, in this case, we chose not to remove the term. If this were not the 
case, the word dog would be included in a custom stop word dictionary and removed.

To identify these words, we can also look at term frequencies. Words that have 
high frequencies across all documents in our collection but do not provide informa-
tional content are good candidates for removal. After making these choices, we can 
select a subset of the data with the term in it and read it. While reading, we want to 
ensure that the term does not provide information that is relevant to the analysis 
question. In the creation of a custom stop word dictionary, the process should be 
repeated, creating subsets for reading several times to check for multiple uses of the 
term (Inmon 2017).

Custom dictionaries can be used in many text analysis projects and not exclu-
sively to filter stop words. Custom dictionaries are created in information retrieval 
to find keywords in context (KWIC). Instead of finding tokens for removal, these 
keywords are used as search terms. Additional uses of common and custom lexicons 
will be presented in Chap. 10 for sentiment analysis.

4.6  Stemming and Lemmatization

4.6.1  Syntax and Semantics

Prior to introducing the final preprocessing step, it is necessary to consider two 
important concepts: syntax and semantics. Syntax concerns sentence structure, 
including grammar and parts of speech. Parts of speech are grammatical categories 
or word classes, such as noun, verb, and adjective (Manning and Schütze 1999). 
Semantics, on the other hand, refers to meaning. Part-of-speech tagging is beneficial 
in text analysis because in identifying the part of speech of a token, the most likely 
meaning can also be identified.

Two important semantic concepts related to part-of-speech tagging are synon-
ymy and polysemy. Synonymy refers to two different words having the same 
meaning. If a document were added that said, “My cap is brown,” the terms cap 
and hat would demonstrate synonymy. Since the synonyms cannot be recognized 
automatically, each word is a separate token.

Polysemy refers to a single word having multiple meanings. In the case of the 
word coat in our example, in one context, it means a garment that can be worn, but 

4.6 Stemming and Lemmatization
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in another context, it can refer to a dog’s hair or fur. In our example, it is possible 
that in Document 10, which reads, “My fluffy dog has a white coat and hat,” the dog 
is wearing a white coat, but it is also possible that the dog has white fur. As a noun, 
the word coat can mean “fur covering the body of an animal” (Wordnet 3.1).

4.6.2  Stemming

The final stage is to perform either stemming or lemmatization on the documents. 
Stemming and lemmatization involve breaking words down to their root word. 
Stemming involves the removal of a word’s suffix to reduce the size of the vocab-
ulary (Porter 1980). Lemmatization is similar to stemming, except it incorporates 
information about the term’s part of speech (Yatsko 2011). Both methods com-
bine words that contain the same root into a single token to reduce the number of 
unique tokens within the analysis set. Words with a common root often share a 
similar meaning. These words are then grouped into one token (Manning et al. 
2008). There are exceptions to the roots of words sharing the same meaning, but 
the added reduction in complexity is often worth the price of incorrectly catego-
rizing a few words.

As an example, let’s use the root train. Train has several forms, including:

 – Train
 – Trains
 – Trained
 – Training
 – Trainer

In stemming, these words return the root train. Common stemmers, such as 
Porter’s (1980), Lovins’ (1968), and Paice’s (1990, 1994), use a series of rules to 
remove word endings. These algorithms aim to return the base word. The number 
of characters removed changes depending on the stemming algorithm. A stemmer 
that removes more from a word will result in less variation among tokens and more 
word forms grouped within the same token. Depending on the project, this could 
mean better results or increased errors (Manning et al. 2008).

As an example of stemming in our document collection, we can take a closer 
look at Document 9, shown in Fig. 4.7, before and after stemming.

The term fluffy describes the dog’s fur or fluff. Using Porter’s stemming algo-
rithm (Porter 1980), the term fluffy is broken down to the root word fluffi. Other 
terms with this root will also be replaced by the root. Some terms that would also 
be truncated to the root fluffi are fluffier, fluffiest, fluffiness, and fluffily.

As the figure shows, in the document after stemming, the terms dogs and hats 
are converted to their singular form, dog and hat, respectively. The term favorites 
is not only broken down to its singular form but also further reduced to the root, 
favorit. Some terms that would also be stemmed to the root favorit are favorite, 
favorites, and favorited. The full, stemmed document collection appears in 
Fig. 4.8.

4 Text Preprocessing
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Fig. 4.7 Document 9 tokenized text before and after stemming

Fig. 4.8 Stemmed example document collection

4.6 Stemming and Lemmatization
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4.6.3  Lemmatization

One difficulty encountered with stemming (and text analytics in general) is that a 
single word could have multiple meanings depending on the word’s context or part 
of speech. Lemmatization deals with this problem by including the part of speech in 
the rules grouping word roots. This inclusion allows for separate rules for words 
with multiple meanings depending on the part of speech (Manning et al. 2008). This 
method helps improve the algorithm by correctly grouping tokens at the cost of 
added complexity.

As an example of lemmatization in our document collection, we can again look 
at Document 9 in Fig. 4.9. The figure depicts the document at the end of Step 3 in 
green and the document after stemming and after lemmatization in orange. As 
shown, stemming and lemmatization produce the same tokens for the terms dog, 
brown, and hat but vary with respect to fluffy and favorite.

Returning to the terms that would be truncated to the root fluffi using stemming, 
we can consider how lemmatization would impact them. These terms and their parts 
of speech are displayed in Table 4.1. As shown, all adjectives are lemmatized to 
fluffy, while the noun and adverb, fluffiness and fluffily, remain unchanged.

The same procedure can be done for the related terms that reduce to the root 
favorit in stemming. Table  4.2 displays the words, parts of speech, and 

Table 4.1 Document 9 
related words, POS, and 
lemmatization for the word 
fluffy

Word Part of speech Lemmatization

Fluffy Adjective Fluffy
Fluffier Adjective Fluffy
Fluffiest Adjective Fluffy
Fluffiness Noun Fluffiness
Fluffily Adverb Fluffily

Fig. 4.9 Document 9 before and after stemming and lemmatization

4 Text Preprocessing
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Table 4.2 Document 9 
related words, POS, and 
lemmatization for the word 
favorite

Word Part of speech Lemmatization

Favorite Noun/adjective Favorite
Favorites Noun Favorite
Favorited Verb Favorited

Fig. 4.10 Lemmatized example document collection

 lemmatization of these terms. As shown, favorite and favorites, which are primar-
ily nouns, are lemmatized to favorite, while the verb, favorited, remains unchanged.

The full, lemmatized document collection is displayed in Fig. 4.10.

4.6 Stemming and Lemmatization
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The choice between stemming and lemmatization is up to the analyst and will 
depend on the application and text data.

4.6.4  Part-of-Speech (POS) Tagging

Part-of-speech tagging involves labeling tokens or words by their part of speech 
(Manning and Schütze 1999). Two of the most popular tag sets in English are the 
Brown Corpus (Kučera and Francis 1967) and the Lancaster-Oslo-Bergen (LOB) 
Corpus (Johansson et al. 1978). A newer tag set, the Penn Treebank, was devel-
oped in 1989 and has over 7 million words tagged by their parts of speech 
(Taylor et al. 2003).

Part-of-speech tagging can be completed using one of the software programs 
described in Chap. 1, including many of those presented in Chaps. 13, 14, 15 and 
16. In these programs, the documents are entered as inputs. The program processes 
and outputs the word and annotates the parts of speech (Bird et  al. 2009). The 
method used to identify the part of speech may be rule-based, Markov model-based, 
or maximum entropy-based (Indurkhya and Damerau 2010). Additionally, machine 
learning techniques, such as those introduced in Chap. 9, can be used to automati-
cally identify the parts of speech of words in the document collection. These meth-
ods can prevent errors caused by stemming or lemmatizing words to the same root 
that actually have different meanings depending on the part of speech, demonstrat-
ing polysemy. The accuracy of the analysis can be improved by grouping more 
words, such as synonyms, appropriately.

Key Takeaways
• The text preprocessing process involves unitization and tokenization, stan-

dardization and cleaning, stop word removal, and lemmatization or 
stemming.

• A custom stop word dictionary can be created to eliminate noise in the text.
• Part-of-speech tagging involves labeling tokens or words by their part of 

speech and can be used to prevent stemming and lemmatization-related 
errors.

• N-grams are consecutive token sequences with length n that preserve token 
co-occurrence.

4 Text Preprocessing



59

References

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text 
with the natural language toolkit. Beijing: O’Reilly Media, Inc.

Dumais, S., Platt, J., Heckerman, D., & Sahami, M. (1998, November). Inductive learning algo-
rithms and representations for text categorization. In Proceedings of the seventh international 
conference on Information and knowledge management (pp. 148–155). ACM.

Indurkhya, N., & Damerau, F. J. (Eds.). (2010). Handbook of natural language processing (Vol. 
2). Boca Raton: CRC Press.

Inmon, B. (2017). Turning text into gold: Taxonomies and textual analytics. Bradley Beach: 
Technics Publications.

Johansson, S., Leech, G. N., & Goodluck, H. (1978). The Lancaster-Oslo/Bergen Corpus of British 
English. Oslo: Department of English: Oslo University Press.

Kučera, H., & Francis, W. N. N. (1967). Computational analysis of present-day American English. 
Providence: Brown University Press.

Lovins, J.  B. (1968). Development of a stemming algorithm. Mechanical Translation and 
Computational Linguistics, 11(1–2), 22–31.

Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. 
Cambridge: MIT Press.

Manning, C., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge: 
Cambridge University Press. https://doi.org/10.1017/CBO9780511809071.

Paice, C. D. (1990). Another stemmer. ACM SIGIR Forum, 24(3), 56–61.
Paice, C.  D. (1994, August). An evaluation method for stemming algorithms. In Proceedings 

of the 17th Annual International ACM SIGIR Conference on Research and Development in 
Information Retrieval (pp. 42–50). Springer-Verlag New York, Inc.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130–137.
Salton, G. (1971). The SMART retrieval system: Experiments in automatic document processing. 

Englewood Cliffs: Prentice-Hall.
Salton, G. (1989). Automatic text processing: The transformation, analysis, and retrieval of. 

Reading: Addison-Wesley.
Struhl, S. (2015). Practical text analytics: Interpreting text and unstructured data for business 

intelligence. London: Kogan Page Publishers.
Taylor, A., Marcus, M., & Santorini, B. (2003). The penn treebank: An overview. In Treebanks 

(pp. 5–22). Dordrecht: Springer.
Weiss, S. M., Indurkhya, N., Zhang, T., & Damerau, F. (2010). Text mining: predictive methods for 

analyzing unstructured information. Springer Science & Business Media.
Wilbur, W.  J., & Sirotkin, K. (1992). The automatic identification of stop words. Journal of 

Information Science, 18(1), 45–55.
Yatsko, V.  A. (2011). Methods and algorithms for automatic text analysis. Automatic 

Documentation and Mathematical Linguistics, 45(5), 224–231.

Further Reading

For a more comprehensive treatment of natural language processing, see Indurkhya and Damerau 
(2010), Jurafsky and Martin (2014), or Manning and Schütze (1999).

Further Reading

https://doi.org/10.1017/CBO9780511809071


61© Springer Nature Switzerland AG 2019 
M. Anandarajan et al., Practical Text Analytics, Advances in Analytics and Data 
Science 2, https://doi.org/10.1007/978-3-319-95663-3_5

Chapter 5
Term-Document Representation

Abstract This chapter details the process of converting documents into an 
analysis- ready term-document representation. Preprocessed text documents are 
first transformed into an inverted index for demonstrative purposes. Then, the 
inverted index is manipulated into a term-document or document-term matrix. The 
chapter concludes with descriptions of different weighting schemas for analysis-
ready term- document representation.

Keywords Inverted index · Term-document matrix · Document-term matrix · 
Term frequency · Document frequency · Term frequency-inverse document 
frequency · Inverse document frequency · Weighting · Term weighting · Document 
weighting · Log frequency

5.1  Introduction

Following the text preparation and preprocessing, outlined in Chap. 4, the next step 
is to transform the text documents into a compatible format for text analysis. At this 
stage, we need to convert the text data into frequencies that can be used in analytic 
calculations. To build the term-document representation, we borrow some concepts 
from matrix algebra. In this chapter, before transforming the text data into a term- 
document matrix representing the frequency of each word in each document, we 
create an inverted index. Finally, we present several weighting measures that can be 
used to transform the matrix representation.

5.2  The Inverted Index

The first step toward building a representation of the terms and documents in our 
document collection is to create an inverted index. An inverted index contains a 
dictionary of the unique terms or n-grams in the preprocessed tokenized text. The 
index also contains postings where the documents in which each of the dictionary 
terms occurs are listed (Manning et al. 2008).

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_5&domain=pdf
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As described in Chap. 4, we preprocess the text to transform it into a format to 
create a representation of the term-document information. Table 5.1 displays the 
sample document collection containing ten documents in which dog owners talk 
about their dogs. In the text column, the raw document text is displayed. The pre-
processed text appears in the third column of the table.

From the preprocessed text, we create an inverted index, illustrated in Table 5.2. 
The table contains the unique preprocessed terms in the document collection on the 
left, under Dictionary, and the document numbers in which the terms appear are on 
the right, under Postings. The terms listed in the dictionary can be considered the 
terms in the vocabulary. The inverted index creates the foundation for our term fre-
quency representation.

Based on the inverted index, we represent the document collection as a listing 
of each term-posting pair. This listing includes frequency information or the 
number of times the term appears in a document. For example, as illustrated in 

Table 5.1 Unprocessed and preprocessed text

Documents
Number Text Preprocessed text

1 My favorite dog is fluffy and tan [favorite] [dog] [fluffy] [tan]
2 The dog is brown and cat is brown [dog] [brown] [cat] [brown]
3 My favorite hat is brown and coat is pink [favorite] [hat] [brown] [coat] [pink]
4 My dog has a hat and leash [dog] [hat] [leash]
5 He has a fluffy coat and brown coats [fluffy] [coat] [brown] [coat]
6 The dog is brown and fluffy and has a brown 

coat
[dog] [brown] [fluffy] [brown] [coat]

7 My dog is white with brown spots [dog] [white] [brown] [spot]
8 The white dog has a pink coat and the brown 

dog is fluffy
[white] [dog] [pink] [coat] [brown] 
[dog] [fluffy]

9 The three fluffy dogs and two brown hats are 
my favorites

[fluffy] [dog] [brown] [hat] [favorite]

10 My fluffy dog has a white coat and hat [fluffy] [dog] [white] [coat] [hat]

Table 5.2 Inverted index for dcument collection

Dictionary Postings

brown 2 3 5 6 7 8 9
cat 2
coat 3 5 6 8 10
dog 1 2 4 6 7 8 9 10
favorite 1 3 9
fluffy 1 5 6 8 9 10
hat 3 4 9 10
leash 4
pink 3 8
spot 7
tan 1
white 7 8 10

5 Term-Document Representation
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Document Preprocessed tokenized text Frequency

1 Favorite dog fluffy tan 0
2 Dog brown cat brown 2
3 Favorite hat brown coat pink 1
4 Dog hat leash 0
5 Fluffy coat brown coat 1
6 Dog brown fluffy brown coat 2
7 Dog white brown spot 1
8 White dog pink coat brown dog 

fluffy
1

9 Fluffy dog brown hat favorite 1
10 Fluffy dog white coat hat 0

Table 5.3 Document frequency of the term brown

Term Document Frequency

brown 1 0
brown 2 2
brown 3 1
brown 4 0
brown 5 1
brown 6 2
brown 7 1
brown 8 1
brown 9 1
brown 10 0

Table 5.4 Term-postings frequency table for the term brown

Table 5.3, we create a table by counting the number of times the word brown 
appears in each of the documents.

The term brown appears in Documents 2 and 6 twice and appears once in 
Documents 3, 5, 7, 8, and 9. For the term brown, the term-posting pairs and fre-
quency information are displayed in Table 5.4. Now, we can represent our docu-
ments containing the term brown by their document and frequency.

The remaining 11 terms can be represented in the same way as brown. By rear-
ranging the inverted index in Table 5.2 to include the frequency information for the 
term brown from Table 5.3, we have computed the frequency values that will make 
up the first row of our term-document matrix. Our next step will be to transform this 
list of frequencies for term-document pairs into a matrix representation for all of the 
terms and documents in our document collection. We begin by introducing the term- 
document matrix representation.

5.2 The Inverted Index
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5.3  The Term-Document Matrix

Text analysis is made possible using some concepts from matrix algebra. A matrix 
is a two-dimensional array with m rows and n columns. Matrix A is depicted below. 
Each entry in the matrix is indexed as aij, where i represents the row number and j 
indexes the column number of the entry. There are n columns and m rows in matrix 
A. a11, for instance, is located in the first row and first column of matrix A.
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We model textual information from our document collection in two dimensions, 
terms and documents. Following text parsing and inverted indexing, we can model 
the individual terms or tokens in each of the documents in our document 
collection.

In text mining, we use a specific type of matrix to represent the frequencies of 
terms in documents. A term-document matrix (TDM) or document-term matrix 
(DTM) is created to represent a collection of documents for text analysis. In a TDM, 
the rows correspond to terms, and the columns correspond to documents. 
Alternatively, in a DTM, the rows correspond to documents, and the columns cor-
respond to terms. An illustration of the setup of the two matrices appears in Fig. 5.1. 
In the examples of the DTM and TDM layouts in the figure, there are three terms 
and three documents. The only difference between the two is the placement of the 

Document 1

Document 2

Document 3

Document 1

DTM

TDM

Document 2 Document 3

Term 1

Term 2

Term 3

Term 1 Term 2 Term 3

Fig. 5.1 Basic document-term and term-document matrix layouts
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terms and documents, and either can be created and used in text mining analysis. In 
the example in this chapter, we will build a TDM.

As described, a TDM created to represent a collection of n documents has m 
rows and n columns, where m represents the total number of terms and n represents 
the total number of documents. Each entry aij contains the frequency with which 
term i occurs in document j. Typically, the number of terms in the TDM will be 
greater than the number of documents. The unique terms in the preprocessed text 
column of Table 5.1 are used to create the rows of our TDM. Each document in the 
table becomes a column in our TDM.

The term brown and the other terms in our vocabulary become the rows of our 
matrix, and the documents will be the columns. The frequency values will include 
the frequency for each of the term-document pairs. Any term that does not occur in 
a document will have a value of 0. We represent the document collection introduced 
in Table 5.1 as a TDM in Table 5.5. In this case, we have a 12-term by 10-document 
matrix. Note that the row for the term brown is the frequency column from Table 5.4. 
All of the rows in the TDM in Table 5.5 are computed in the same fashion.

Given that a matrix is a collection of points, we can represent the information 
visually to examine our TDM. In Fig. 5.2, a heat map is used to represent the fre-
quency information in the TDM. The darker colors indicate lower frequency, and 
the lighter colors indicate higher frequency values in the TDM. The heat map shows 
that the words dog and brown are commonly used in our document collection, while 
leash and spot are rarely used.

5.4  Term-Document Matrix Frequency Weighting

When creating the TDM in Table 5.5, we used the term frequency values of each 
term in each document as the values in the matrix. The term frequency of term i 
in document j is sometimes denoted as tfi, j. In using the term frequency in our 
TDM, the higher the frequency of a given term in a document, the more important 

Table 5.5 Term-document matrix example

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

brown 0 2 1 0 1 2 1 1 1 0
cat 0 1 0 0 0 0 0 0 0 0
coat 0 0 1 0 2 1 0 1 0 1
dog 1 1 0 1 0 1 1 2 1 1
favorite 1 0 1 0 0 0 0 0 1 0
fluffy 1 0 0 0 1 1 0 1 1 1
hat 0 0 1 1 0 0 0 0 1 1
leash 0 0 0 1 0 0 0 0 0 0
pink 0 0 1 0 0 0 0 1 0 0
spot 0 0 0 0 0 0 1 0 0 0
tan 1 0 0 0 0 0 0 0 0 0
white 0 0 0 0 0 0 1 1 0 1

5.4 Term-Document Matrix Frequency Weighting 
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that term is to the content of that document. For instance, in looking at the TDM 
in Table  5.5, the term brown appears twice in Document 2 and only once in 
Document 3. This example illuminates a major issue with using term frequency to 
measure importance. The term brown is more important in Document 2 than in 
Document 3, but is it twice as important? To reduce the impact of a high degree of 
variability in term frequencies, we can use alternative weighting approaches.

We will explore local weighting, global weighting, and combinatorial weight-
ing approaches. Local weighting measures apply weighting to capture the impor-
tance of a term within a specific document in the larger collection of documents. 
This weighting tells us how much a term contributes to each of the documents. 
Global weighting is the overall importance of the term in the full collection of 
documents (Berry et al. 1999). Words that appear frequently, and in many docu-
ments, will have a low global weight. Combinatorial weighting combines local 
and global weighting.

5.4.1  Local Weighting

When applying local weighting, the result will be a matrix with the same dimen-
sions as the original, unweighted TDM. In our case, the result of local weighting 
will be a 12-word by 10-document-weighted TDM. The local weighting alternatives 
that we consider are logarithmic (log) frequency and binary/Boolean frequency.

white

spot

leash

pink

hat

coat

cat

brown

tan

fluffy

favorite

dog

D1 D2 D3 D4 D5
Documents

T
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m
s
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value
2.0
1.5
1.0
0.5
0.0

Fig. 5.2 Heat map visualizing the term-document matrix
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5.4.1.1  Logarithmic (Log) Frequency

Log frequency is a weighting method that reduces the effect of large differences in 
frequencies (Dumais 1991). The base of the logarithm can vary. Below, the natural 
logarithm, denoted ln, is used. Table  5.6 illustrates the log frequency-weighted 
TDM. As the table shows, the weight of the terms appearing twice in a document 
has a value of 1.1, and terms appearing once in a document have a value of 0.7. This 
method reduces the difference between the two weights from 1 to 0.4. The log fre-
quency of term i in document j, lfi, j, is calculated as
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5.4.1.2  Binary/Boolean Frequency

Binary frequency captures whether a word appears in a document, without consid-
eration of how many times it appears. In the binary frequency-weighted TDM in 
Table 5.7, there is no difference between a term occurring once or twice in a docu-
ment. This approach is equivalent to recording if a term appears in a document. A 
binary frequency matrix can be used to perform further weighting on the TDM. The 
binary frequency of term i in document j, ni, j, is calculated as
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Table 5.6 Log frequency matrix

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

brown 0.0 1.1 0.7 0.0 0.7 1.1 0.7 0.7 0.7 0.0
cat 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
coat 0.0 0.0 0.7 0.0 1.1 0.7 0.0 0.7 0.0 0.7
dog 0.7 0.7 0.0 0.7 0.0 0.7 0.7 1.1 0.7 0.7
favorite 0.7 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.7 0.0
fluffy 0.7 0.0 0.0 0.0 0.7 0.7 0.0 0.7 0.7 0.7
hat 0.0 0.0 0.7 0.7 0.0 0.0 0.0 0.0 0.7 0.7
leash 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0
pink 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.7 0.0 0.0
spot 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0
tan 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
white 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.0 0.7

5.4 Term-Document Matrix Frequency Weighting 
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5.4.2  Global Weighting

Global weighting indicates the importance of a term in the whole document collec-
tion, rather than in individual documents. When applying global weighting, the 
result of the calculations will be a vector of values that is the length of the total 
number of terms, which in our case is 12. The global weighting alternatives that we 
consider are document frequency, global frequency, and inverse document 
frequency.

5.4.2.1  Document Frequency (df)

Document frequency can be derived using the binary frequency-weighted TDM by 
summing the rows of the binary frequency-weighted TDM. Document frequency, 
dfi, is calculated as

 

df ni
j

D

i j=
=
∑

1
, ,

 

where ni, j is the binary frequency-weighted matrix and D is the total number of 
documents.

As an example, we calculate the document frequency of the word brown by add-
ing the values in the row for brown in the binary frequency-weighted TDM.

 

df nbrown
j

brown j= = + + + + + + + + + =
=
∑

1

10

0 1 1 0 1 1 1 1 1 0 7, .

 

We find that the document frequency of the term brown is 7, meaning that the 
term brown appears in seven out of the ten documents in the collection. The 

Table 5.7 Binary frequency matrix

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

brown 0 1 1 0 1 1 1 1 1 0
cat 0 1 0 0 0 0 0 0 0 0
coat 0 0 1 0 1 1 0 1 0 1
dog 1 1 0 1 0 1 1 1 1 1
favorite 1 0 1 0 0 0 0 0 1 0
fluffy 1 0 0 0 1 1 0 1 1 1
hat 0 0 1 1 0 0 0 0 1 1
leash 0 0 0 1 0 0 0 0 0 0
pink 0 0 1 0 0 0 0 1 0 0
spot 0 0 0 0 0 0 1 0 0 0
tan 1 0 0 0 0 0 0 0 0 0
white 0 0 0 0 0 0 1 1 0 1

5 Term-Document Representation
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document frequency values for each of the 12 terms can be calculated the same 
way and are plotted in Fig. 5.3.

5.4.2.2  Global Frequency (gf)

Global frequency measures the frequency of terms across all documents and is cal-
culated as

 

gf tfi
j

D

i j=
=
∑

1
, ,

 

where tfi, j is the frequency of term i in document j and D is the number of 
documents.

As an example, we compute the global frequency of the word brown. Using the 
formula, we calculate

Fig. 5.3 Document frequency weighting

5.4 Term-Document Matrix Frequency Weighting
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gf tfbrown
j

brown j= = + + + + + + + + + =
=
∑

1

10

0 2 1 0 1 2 1 1 1 0 9, .

 

The global frequencies of the other terms are computed in the same way and are 
displayed in Fig. 5.4.

5.4.2.3  Inverse Document Frequency (idf)

In inverse document frequency, rare terms have higher weights, and frequent 
terms have lower weights (Dumais 1991). Inverse document frequency, idfi, is 
calculated as

 

idf
n

dfi
i

=








 +log ,2 1

 

where n is the total number of documents in the collection.

Fig. 5.4 Global frequency weighting
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To find the inverse document frequency of the word brown, we would calculate 
it as follows

 

idf
dfbrown

brown

=








 + = 






 + =log log . .2 2

10
1

10

7
1 1 51

 

The idf for each of the words can be computed in the same way. Figure 5.5 depicts 
the results of calculating the inverse document frequency for each of the terms.

5.4.3  Combinatorial Weighting: Local and Global Weighting

Combinatorial weighting combines local and global frequency weighting to con-
sider the importance of each of the terms in the documents individually and in 
the document collection. In some cases, combinatorial weighting can also include 
normalization based on the total number of terms in each document. Here, we 
will focus on one of the most common combinatorial weighting measures, term 
frequency- inverse document frequency.

Fig. 5.5 Inverse document frequency weighting
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5.4.3.1  Term Frequency-Inverse Document Frequency (tfidf)

Term frequency-inverse document frequency weighting combines term frequency 
and inverse document frequency by multiplying the local term frequency weight by 
the global inverse document frequency weight. tfidf is calculated as

 
tfidf tf idfi j i j i, , ,= ∗

 

where tfi, j is term frequency and idfi is inverse document frequency.
tfidf is high when a term occurs many times in a few documents and is low when 

a term occurs in all, most or many documents. Intuitively, if a word appears fre-
quently in a document or the collection of documents, it would make sense to con-
sider the term to be important. However, the more frequently a term appears across 
documents, the less it actually helps with understanding the textual content.

The use of this method “balances the importance of a term to a document by its 
frequency in that document, evidenced by its frequency in that document, against 
a term’s overall discriminative ability, based on its distribution across the collec-
tion as a whole” (Jessup and Martin 2001, p. 5). The tfidf-weighted TDM matrix 
appears in Table 5.8. As the table shows, terms such as spots, cat, and tan, which 
appear infrequently across the collection of documents but appear frequently in a 
particular document, have a high tfidf weight value in the documents in which they 
appear. The word dog, which appears frequently in the collection of documents, 
has a low weighting in the documents in which it occurs because of its high global 
frequency. The tfidf-weighted TDM, which is found by multiplying the term 
frequency- weighted TDM and the inverse document frequency vector, is shown in 
Table 5.8.

Table 5.8 tfidf-weighted TDM

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

brown 0.00 3.03 1.51 0.00 1.51 3.03 1.51 1.51 1.51 0.00
cat 0.00 4.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
coat 0.00 0.00 2.00 0.00 4.00 2.00 0.00 2.00 0.00 2.00
dog 1.32 1.32 0.00 1.32 0.00 1.32 1.32 2.64 1.32 1.32
favorite 2.74 0.00 2.74 0.00 0.00 0.00 0.00 0.00 2.74 0.00
fluffy 1.74 0.00 0.00 0.00 1.74 1.74 0.00 1.74 1.74 1.74
hat 0.00 0.00 2.32 2.32 0.00 0.00 0.00 0.00 2.32 2.32
leash 0.00 0.00 0.00 4.32 0.00 0.00 0.00 0.00 0.00 0.00
pink 0.00 0.00 3.32 0.00 0.00 0.00 0.00 3.32 0.00 0.00
spot 0.00 0.00 0.00 0.00 0.00 0.00 4.32 0.00 0.00 0.00
tan 4.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
white 0.00 0.00 0.00 0.00 0.00 0.00 2.74 2.74 0.00 2.74

5 Term-Document Representation
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5.5  Decision-Making

Having reviewed the frequency-weighting options, it is probably clear that each 
weighting schema has its own strengths and weaknesses. The choice of weighting 
method will depend on both the data and the intended modeling and analysis 
method. For instance, the first analysis method that we will explore, latent semantic 
analysis (LSA), covered in Chap. 6, is well suited to tfidf weighting. On the other 
hand, some topic models, including latent Dirichlet allocation (LDA), which is cov-
ered in Chap. 8, require the unweighted TDM as an input for the analysis.

In addition to the modeling and analysis considerations that influence the choice 
of weighting, there are some inherent weaknesses in raw frequency data that encour-
age the use of weighted TDMs. First, longer documents will have higher term counts 
than shorter documents. Additionally, high-frequency terms may be less important 
than lower-frequency terms. Indeed, the idea of a stop word list is based on the 
notion that the most common terms in a language will be the lowest in content. 
Terms such as the and an may be high in frequency in a document collection but will 
certainly be low in content.
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Key Takeaways
• An inverted index represents term-posting frequency information for a 
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processed text data into a matrix representation that can be used in 
analysis.

• Local, global, and combinatorial weighting can be applied to the term- 
document or document-term matrix.
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Chapter 6
Semantic Space Representation and Latent 
Semantic Analysis

Abstract In this chapter, we introduce latent semantic analysis (LSA), which uses 
singular value decomposition (SVD) to reduce the dimensionality of the document- 
term representation. This method reduces the large matrix to an approximation that 
is made up of fewer latent dimensions that can be interpreted by the analyst. Two 
important concepts in LSA, cosine similarity and queries, are explained. Finally, we 
discuss decision-making in LSA.

Keywords Latent semantic analysis (LSA) · Singular value decomposition (SVD) 
· Latent semantic indexing (LSI) · Cosine similarity · Queries

6.1  Introduction

In Chapter 5, we built a term-document matrix (TDM) based on the text in our docu-
ment collection. This matrix-based representation allows us to consider documents 
as existing in term space and terms as existing in document space. In this chapter, 
we present the latent semantic analysis (LSA) of the TDM. LSA is a fully automatic 
semantic space modeling approach in which terms are points in high-dimensional 
space and the spatial closeness between those points represents their semantic asso-
ciation (Landauer and Dumais 1997). Semantic representation tries to reveal mean-
ing that can be hidden in the documents. Semantic knowledge extends beyond 
meaning to consider relations among terms and the hidden meaning and concepts 
present in the documents.

The examples in this chapter use the tfidf-weighted TDM created in Chap. 5, 
which includes 12 terms and 10 documents in which dog owners describe their 
dogs. Tfidf weighting is a popular weighting method used in LSA, because it com-
bines a local and global weighting function to dampen the impact of high-frequency 
terms and give more weight to less frequently occurring documents that occur in 
fewer documents. The tfidf-weighted matrix used in this chapter is presented in 
Table 5.8. We use a weighted TDM because it produces improved results over mod-
els built with no weighting (Dumais 1991). We begin by plotting relationships based 
on the simple, unweighted TDM to conceptualize the term and document spaces.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_6&domain=pdf
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To begin, we visualize a vector space representation. As shown in Fig. 6.1, we plot 
the raw frequency information for the words brown and dog using Documents 1, 2, 
3, 7, and 8. Plotting documents in term space can help us understand the distance 
between documents and provides a geometric representation of our TDM. This figure 
depicts these five documents as vectors in two-dimensional term space. As shown, 
the documents are the points in this space. For instance, Document 1 is a point 
located at (0,1) in the brown and dog space, because brown does not occur in the 
document and dog occurs once. Document 2 is a point located at (2,1) in the brown 
and dog space because brown occurs twice and dog occurs once in the document. 
The angles formed by vectors in spatial representations are the basis for an important 
measure of association, cosine similarity, which will be covered in Sect. 6.2.

For more than two terms, we can visualize documents in term space in higher 
dimensions, as shown in Fig. 6.2. The three-dimensional term space in that figure 
includes the terms brown, coat, and favorite. In this figure, we visualize the frequen-
cies of each of the three terms in each of our documents in our document collection. 
The same plots can be created to represent terms in document space. Due to the 
number of dimensions in the TDM, we are limited in how we can visualize these 
associations. However, the use of the semantic space representation allows us to 
model these associations in much higher dimensions than our graph allows.

Fig. 6.1 Two-dimensional representation of the first five documents in term space for the terms 
brown and dog

6 Semantic Space Representation and Latent Semantic Analysis
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6.2  Latent Semantic Analysis (LSA)

Dumais et al. (1988) and Deerwester et al. (1990) first introduced latent semantic 
analysis (LSA) as latent semantic indexing (LSI), due to its objective of indexing 
text. LSA extends the concept to all analytic applications beyond indexing. LSA 
creates a vector space representation of our original matrix using singular value 
decomposition (SVD). Specifically, LSA is an application of SVD to identify latent 
meaning in the documents through dimension reduction. The original TDM is 
assumed to be too big and sparse to be useful and/or meaningful. In real-world text 
applications, the TDM representation of a document collection can be very large 
and difficult to interpret or understand. LSA not only reduces the dimensionality but 
also identifies latent dimensions based on singular values. In order to understand 
how LSA works, we first need to familiarize ourselves with SVD.

6.2.1  Singular Value Decomposition (SVD)

LSA relies on SVD to identify latent information in the TDM. SVD splits a matrix, 
in our case the TDM, into three smaller matrices that, when multiplied, are equiva-
lent to the original matrix. After this decomposition, we reduce the size of our three 
component matrices further by choosing to keep a smaller number of dimensions. 

Fig. 6.2 Three-dimensional representation of the ten documents in term space for the terms 
brown, coat and favorite

6.2 Latent Semantic Analysis (LSA)
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SVD is used in semantic space modeling to create smaller approximations of large 
document-term matrices. The truncated matrix created through SVD has four 
important purposes: latent meaning, noise reduction, high-order co-occurrence, and 
sparsity reduction (Turney and Pantel 2010, pp. 159–160).

In SVD, we calculate A = UΣVT, where A is the term-document matrix, U is the 
left singular vector of words, Σ is a matrix with weight values on the diagonal, and 
V is the right singular vector of documents. r is the rank of the matrix A. If we 
reduce r to a smaller number, k, we create an approximation of the original matrix. 
r can then be reduced to k, where Ak is then a lower dimensional, rank k approxima-
tion of the original matrix A. In addition, the dimensions of the three component 
matrices are adjusted from r to k. SVD can be applied to any rectangular matrix to 
decompose a larger matrix into the product of three smaller matrices. Figure 6.3 
depicts the SVD of the A matrix.

6.2.2  LSA Example

When performing SVD, the TDM is known as the A matrix, which is the matrix of 
which we want to create a three-component representation. The rank of our A 
matrix, r, is 10, which is the minimum of the number of rows and number of col-
umns in our A matrix. More formally, rank is

 
r

m

n
=





min ,
 

where m is the total number of terms and n is the total number of documents.
If the number of documents in the TDM is larger than the number of terms in our 

TDM, the rank will be equal to the number of terms. On the other hand, if the num-
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Fig. 6.3 SVD process in LSA, based on Martin and Berry (2007)
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ber of terms is larger, the rank will be equal to the number of documents. In our 
case, we have the latter situation, because our terms outnumber our documents.

A =
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Brown 0.0 3.0 1.5 0.0 1.5 3.0 1.5 1.5 1.5 0.0
Cat 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Coat 0.0 0.0 2.0 0.0 4.0 2.0 0.0 2.0 0.0 2.0
Dog 1.3 1.3 0.0 1.3 0.0 1.3 1.3 2.6 1.3 1.3
Favorite 2.7 0.0 2.7 0.0 0.0 0.0 0.0 0.0 2.7 0.0
Fluffy 1.7 0.0 0.0 0.0 1.7 1.7 0.0 1.7 1.7 1.7
Hat 0.0 0.0 2.3 2.3 0.0 0.0 0.0 0.0 2.3 2.3
Leash 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0
Pink 0.0 0.0 3.3 0.0 0.0 0.0 0.0 3.3 0.0 0.0
Spot 0.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0
Tan 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
White 0.0 0.0 0.0 0.0 0.0 0.0 2.7 2.7 0.00 2.7

The U matrix is our term matrix and the left singular vector. The U matrix has 12 
rows, a row for each of the terms in the TDM. The number of columns in the U 
matrix is ten, because the number of columns is equal to the rank of the A matrix.

U =
−0.4 −0.3 −0.4 0.1 0.2 −0.1 0.3 0.2 −0.3 0.4
−0.1 −0.2 −0.5 0.3 0.3 −0.1 −0.2 −0.2 0.5 −0.3
−0.4 −0.1 0.0 −0.6 0.0 0.3 0.2 0.2 0.4 −0.1
−0.4 −0.1 0.1 0.3 0.0 0.2 −0.3 −0.1 −0.4 −0.1
−0.3 0.6 −0.1 0.1 −0.1 −0.3 0.3 0.0 0.0 −0.4
−0.4 0.1 0.0 −0.1 −0.2 0.4 0.0 −0.2 −0.3 −0.4
−0.3 0.3 0.3 0.1 0.4 −0.1 0.3 −0.4 0.2 0.4
−0.1 0.2 0.3 0.3 0.6 0.3 −0.1 0.5 0.0 −0.2
−0.3 0.1 0.1 −0.3 0.0 −0.6 −0.5 0.3 0.0 0.0
−0.1 −0.4 0.3 0.4 −0.3 −0.2 0.5 0.3 0.2 −0.2
−0.1 0.4 −0.2 0.3 −0.5 0.2 −0.2 0.3 0.3 0.4
−0.3 −0.3 0.4 0.1 −0.3 0.0 −0.2 −0.3 0.2 0.1

The Σ matrix contains the singular values on the diagonal, and the rest of the 
matrix is zeroes. The Σ matrix is a symmetric, or square matrix, with the number of 
rows and columns equal to the rank of our A matrix. For this reason, our Σ matrix 
has ten rows and ten columns. The singular values on the diagonal of the matrix are 
in decreasing order. The largest singular value is in the first column, and the smallest 
singular value is in the last column. This will be the case in any SVD application.

6.2 Latent Semantic Analysis (LSA)
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Σ =
9.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 5.3 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 5.1 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 4.2 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 3.5 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

The VT matrix, in which T represents the transpose, is the document matrix and 
the right singular vector. The number of rows in the VT matrix is equal to the rank 
of our A matrix and is ten. The number of columns in our VT matrix is equal to the 
number of documents, ten. When the number of terms is larger than the number of 
documents in a TDM, VT will have the same number of rows and columns, because 
the rank is equal to the number of documents. On the other hand, if the number of 
documents is larger than the number of terms in a TDM, the U matrix will have the 
same number of rows and columns, because the rank value, r, will be the number 
of terms.

VT =
−0.2 −0.2 −0.4 −0.1 −0.3 −0.3 −0.2 −0.5 −0.3 −0.3
0.6 −0.3 0.3 0.2 −0.1 −0.1 −0.5 −0.2 0.3 0.0
−0.2 −0.7 0.0 0.4 −0.1 −0.2 0.3 0.2 −0.1 0.3
0.4 0.4 −0.3 0.3 −0.4 −0.1 0.5 −0.2 0.2 −0.1
−0.5 0.4 0.2 0.7 0.0 0.0 −0.3 −0.1 0.1 0.0
0.2 −0.1 −0.7 0.3 0.4 0.3 −0.2 −0.1 −0.1 0.3
−0.2 −0.2 0.2 −0.1 0.3 0.2 0.4 −0.7 0.4 0.0
0.2 −0.2 0.2 0.3 0.3 0.2 0.2 0.1 −0.4 −0.7
0.2 0.3 0.3 0.0 0.3 −0.5 0.1 −0.3 −0.5 0.4
0.1 0.0 0.2 0.0 −0.5 0.6 0.0 −0.3 −0.4 0.3

Now that we have used SVD to create the three-component approximation of the 
original TDM, we can create a lower-rank approximation of A to reduce the size. 
The Σ matrix has ten singular values along the diagonal, equal to the rank of our A 
matrix. We want to reduce the number of singular values, thereby reducing the size 
of each of our three component matrices, because each of them has at least one 
dimension that depends on the rank of A. We choose a number, k, and reduce the 
size of each of our component matrices’ dimensions from r to k.

We choose to retain k = 3 singular vectors or three latent dimensions. The reduced 
U, Σ, and VT matrices are shown below. Setting k = 3, the U matrix has 12 rows and 
3 columns, the Σ matrix has 3 rows and 3 columns, and the VT matrix has 3 rows and 
10 columns.

6 Semantic Space Representation and Latent Semantic Analysis
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U =
−0.4 −0.3 −0.4
−0.1 −0.2 −0.5
−0.4 −0.1 0.0
−0.4 −0.1 0.1
−0.3 0.6 −0.1
−0.4 0.1 0.0
−0.3 0.3 0.3
−0.1 0.2 0.3
−0.3 0.1 0.1
−0.1 −0.4 0.3
−0.1 0.4 −0.2
−0.3 −0.3 0.4

Σ =
9.9 0.0 0.0
0.0 6.0 0.0
0.0 0.0 5.4

VT =
−0.2 −0.2 −0.4 −0.1 −0.3 −0.3 −0.2 −0.5 −0.3 −0.3
0.6 −0.3 0.3 0.2 −0.1 −0.1 −0.5 −0.2 0.3 0.0
−0.2 −0.7 0.0 0.4 −0.1 −0.2 0.3 0.2 −0.1 0.3

After choosing k, we multiply the above component matrices to find Ak, our reduced 
rank approximation of the original A matrix. Our Ak matrix, A3, appears in Table 6.1 
in what is referred to as the LSA space.

Table 6.1 The LSA space

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

brown 0.6 3.0 1.2 −0.7 1.8 2.3 1.1 2.1 1.0 0.7
cat 0.1 2.6 0.0 −1.4 0.8 1.2 0.0 0.3 0.1 −0.6
coat 0.7 1.1 1.5 0.5 1.4 1.5 1.3 2.3 1.2 1.5
dog 0.6 0.8 1.3 0.6 1.1 1.2 1.2 2.0 1.0 1.4
favorite 2.6 0.1 2.0 0.8 0.6 0.6 −1.2 0.4 2.0 0.5
fluffy 1.3 0.7 1.6 0.6 1.0 1.1 0.4 1.5 1.4 1.1
hat 1.4 −1.1 1.7 1.5 0.4 0.2 0.2 1.2 1.4 1.4
leash 0.3 −1.4 0.6 1.1 −0.2 −0.4 0.2 0.4 0.4 0.8
pink 0.7 0.2 1.2 0.7 0.8 0.8 0.8 1.5 1.0 1.2
spot −1.3 0.0 −0.2 0.2 0.3 0.3 1.7 1.2 −0.5 0.9
tan 1.8 0.1 1.1 0.3 0.2 0.2 −1.3 −0.2 1.2 −0.1
white −1.0 −0.2 0.5 0.9 0.8 0.7 2.4 2.3 0.1 1.9

6.2 Latent Semantic Analysis (LSA)
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Figure 6.4 shows the documents and terms in three-dimensional LSA vector 
space. The documents are depicted as light blue squares, and the terms are darker 
blue dots. We created this representation by multiplying our reduced U and VT 
matrices by the Σ matrix. This visualization has a clear advantage over the visual-
ization in Fig. 6.2 in that we can view both documents and terms concurrently across 
the three dimensions. Each of the documents and terms in the LSA vector space can 
be thought of as vectors emanating from the origin.

For concreteness, Fig. 6.5 presents a two-dimensional version of Fig. 2.4 with 
only the first two dimensions. The dashed lines drawn from the origin to leash and 
cat can be drawn for each document and term, because they are vectors. Using these 
concepts, we can map the associations between terms, documents, and terms and 
documents. This depiction gives rise to a geometric measure of closeness known as 
cosine similarity.

6.3  Cosine Similarity

The primary method of measuring the association between terms and documents in 
LSA is cosine similarity. Cosine similarity is a means of measuring the semantic 
similarity of words, regardless of their actual co-occurrence in text documents 
(Landauer and Dumais 1997). By applying LSA, we model the terms and docu-
ments in our TDM in vector space. Doing so gives us the ability to model many 
right triangles emanating from the origin to the documents and terms. While the 

Fig. 6.4 Terms and documents in three-dimensional LSA vector space

6 Semantic Space Representation and Latent Semantic Analysis
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calculation is made in multidimensional space, we consider cosine similarity in two 
dimensions for concreteness.

From trigonometry, we know that the cosine is the angle between two vectors. In 
Fig. 6.5, an angle is formed by the two term vectors meeting at the origin. The rows 
of the U matrix are converted to column vectors for the calculation. Cosine similar-
ity can be applied to terms, documents, or both. It can also be applied to queries, or 
pseudo-documents, which will be covered in Sect. 6.5. Cosine similarity scores 
range between −1 and 1 but are typically greater than 0. The cosine similarity for 
two terms, t1 and t2, is calculated as.

 
Cosine t t

t t

t t

T

1 2
1 2

1 2

, ,( ) =
 

where t1
T is the transpose of the t1 vector and ‖‖ represents the vector norm. In the 

case of documents, Cosine(d1, d2), d1 and d2 replace t1 and t2, representing Document 
1 and Document 2, respectively.

Our example uses the formula above to estimate the cosine similarity for two 
terms, rounding to two decimal places for all intermediate calculations. To calculate 
the cosine similarity measurement between the terms fluffy and pink, we use the row 
vectors from the LSA space, A3, corresponding to these words.

fluffy:
1.25 0.74 1.58 0.56 1.03 1.12 0.43 1.54 1.35 1.10

favourite

tan
SV2

SV1

leash

pinkfluffy

coat

brown

white

dog

cat

spot

hatD9

D1

D4
D3

D10

D5
D6

D2

D7

D8

Fig. 6.5 Terms and documents of a two-dimensional LSA solution across the first two 
dimensions
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pink:
0.71 0.17 1.24 0.74 0.78 0.78 0.75 1.50 0.98 1.22

 
fluffy pink fluffy pinkT

i
i i= ∗

=
∑

1

10

 

 fluffy pinkT = + + + + + + + + +0 89 0 13 1 96 0 41 0 80 0 87 0 32 2 31 1 32 1. . . . . . . . . .. .34 10 35=  

The numerator is the cross product, or the dot product, of the two vectors, which is 
calculated to be 10.35. The denominator is the product of the matrix norms of the 
two vectors, which can be computed as the sum of the squared vector values.

 fluffy = + + + + + + + +1 25 0 74 1 58 0 56 1 03 1 12 0 43 1 54 1 32 2 2 2 2 2 2 2. . . . . . . . . 55 1 10 3 582 2+ =. .  

 

pink = + + + + + + + +0 71 0 17 1 24 0 74 0 78 0 78 0 75 1 50 0 982 2 2 2 2 2 2 2 2. . . . . . . . . ++ =1 22 3 022. .  

 fluffypink = 10 81.  

The cosine similarity measure of the terms fluffy and pink can then be calculated by 
Cosine fluffy pink,( ) = 10 35

10 81

.

.
 = 0.96. The cosine similarity values for fluffy and the 

remaining 11 words are calculated in the same way. Table 6.2 presents the cosine 
similarity values for the term fluffy in descending order. The terms pink, dog, and 
coat have high cosine similarity values with the word fluffy. On the other hand, 
spots, cat, and leash have low cosine values with the word fluffy.

The cosine similarity values for all term-term relationships are displayed in 
Table 6.3. Pairs of terms with the highest cosine similarity values around 1.0 are 
coat and dog, coat and pink, dog and pink, favorite and tan, and fluffy and pink. Pairs 
of terms with very high cosine similarity values around 0.90 are brown and coat, 

Term Cosine

pink 0.96
dog 0.94
coat 0.94
hat 0.79
brown 0.79
favorite 0.75
white 0.55
tan 0.54
leash 0.32
cat 0.27
spots 0.19

Table 6.2 Cosine similarity 
measures for fluffy, in 
descending order

6 Semantic Space Representation and Latent Semantic Analysis
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fluffy and coat, fluffy and dog, hat and pink, and spots and white. The lowest cosine 
similarity value is for the terms cat and leash. This result seems reasonable, because 
these terms should be unrelated.

6.4  Queries in LSA

In the field of information retrieval (IR), the use of the LSA space to explore queries 
is an essential tool. Anytime you open your browser to a search engine and type in 
search keywords, you are using a query. Based on the keywords that you provide, 
the search engine returns websites that it believes match your search criteria. In a 
similar way, LSA uses the cosine measures to find documents that are similar to 
words that you designate as query terms (Deerwester et al. 1990). A query is repre-
sented as a scaled, weighted sum of the component term vectors. A query is equal to

 query q UT k k= −Σ 1,  

where qT is a vector of the terms in the query, Uk is the term matrix, and Σk
−1  is the 

inverse of the Σk matrix. Multiplying by the inverse of a matrix is equivalent to 
dividing by the matrix that is inverted. The query is a pseudo-document with a vec-
tor representation, which can be compared to the documents in the collection.

For instance, a query could include the component terms tan, brown, and pink. 
The qT vector of this query is

qT= [1 0 0 0 0 0 0 0 1 0 1 0], based on the pseudo query below.1

brown cat coat dog favorite fluffy hat leash pink spot tan white

1 0 0 0 0 0 0 0 1 0 1 0

1 Note: The qT vector is created using binary frequency, because at this stage weighting cannot be 
calculated and applied to the pseudo-document.

Table 6.3 Term-term cosine similarity measures

brown cat coat dog favorite fluffy hat leash pink spot tan white

brown 0.0

cat 0.8 0.0
coat 0.9 0.3 0.0
dog 0.8 0.3 1.0 0.0
favorite 0.3 0.0 0.5 0.5 0.0
fluffy 0.8 0.3 0.9 0.9 0.8 0.0
hat 0.3 −0.4 0.7 0.7 0.8 0.8 0.0
leash −0.3 −0.8 0.2 0.3 0.4 0.3 0.8 0.0
pink 0.7 0.1 1.0 1.0 0.6 1.0 0.9 0.5 0.0
spots 0.3 0.0 0.5 0.5 −0.5 0.2 0.1 0.2 0.4 0.0
tan 0.2 0.0 0.2 0.2 1.0 0.5 0.6 0.2 0.4 −0.7 0.0
white 0.5 −0.1 0.8 0.8 −0.1 0.5 0.5 0.4 0.7 0.9 −0.4 0.0

6.4 Queries in LSA
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Using the query formula above, we find that the query is equal to (−0.08, 0.03, 
−0.09). We use this result to determine the cosine similarity values for the query and 
each of the documents in the document collection to find the documents most asso-
ciated with the query. Table 6.4 displays the list of documents in descending order 
of similarity. As the table illustrates, Documents 6 and 5 are most closely associated 
with the query, while 7 and 4 are the least associated with, or similar, to the query.

This similarity is based on the angles between the vectors, not physical proxim-
ity. Figure  6.6 shows the documents across the three dimensions. The origin is 
denoted (0, 0, 0), and the pseudo-document query is labeled “query.” A thick black 
line is drawn between the origin and the query. Since Documents 6 and 5 have the 
highest cosine similarity, these vectors are drawn in green. The document vectors 
with the lowest cosine similarity, 4 and 7, are plotted in red. As shown, this line 
between Document 6 and the query nearly overlaps, resulting in a very small angle 
between the two vectors and the highest cosine similarity. On the other hand, while 
Document 7 is physically close to the query, the angle between the two vectors is 
much larger than between the query and Document 6.

6.5  Decision-Making: Choosing the Number of Dimensions

The choice of the number of singular values is an important decision in LSA model-
ing. If too few SVD dimensions are retained, we run the risk of losing important 
information. On the other hand, if we keep too many, our calculations and solution 
may be too complex to be meaningful. For this reason, simple solutions are prefer-
able. Past research has suggested that in the case of big data and very large TDMs 
(or DTMs), using between 100 and 300 dimensions provides good performance 
(Berry and Browne 1999; Dumais 1991; Landauer and Dumais 1997).

Table 6.4 Cosine values 
between the query (brown, 
pink, tan) and documents in 
descending order by cosine 
similarity value

Document Cosine

6 0.81
5 0.78
9 0.73
2 0.71
1 0.69
3 0.66
8 0.24
10 −0.08
7 −0.30
4 −0.30

6 Semantic Space Representation and Latent Semantic Analysis
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In Fig. 6.7, known as a scree plot, we plot the number of singular vectors and the 
amount of variance explained. A scree plot is a visual aid used to evaluate the 
 tradeoff between efficiency and complexity. In doing so, we look for an elbow in the 
graph, or the point at which the slope between points is very small, to determine the 
number of singular vectors to keep. As is evident in the figure, the identification of 
the elbows is a subjective decision, as is the number of singular values to retain. In 
the scree plot below, it appears that three dimensions are appropriate.

LSA has many benefits and is widely used in information retrieval and text min-
ing applications. There are many advantages of using LSA, including its ability to 
handle the sparsity, size, and noise associated with a TDM. In the case of large 
document collections, the associated TDM will be large and sparse. In addition, due 
to the uncertainty involved and the qualitative nature of the text data, the data are 
noisy. LSA can cut through a lot of the noise of the TDM because it is rooted in 
dimension reduction. Additionally, in reducing the dimensionality, it uncovers latent 
factors that are otherwise hidden within the data. In LSA, indirect co-occurrences, 
where, for instance, two words are related through a third word, become important. 
LSA allows us to compute an association measure, cosine similarity, on a lower- 
rank matrix rather than our original TDM.

LSA has the innate ability to uncover deep semantic relationships in the terms 
and documents in the space (Landauer et al. 1998). It can identify similarity that 
stretches beyond just synonymy and is able to determine the importance of terms 
(Hu and Liu 2004). LSA handles the types of noisy, sparse matrices that are pro-
duced in text analysis through the use of SVD. Additionally, it can create pseudo- 
documents to measure similarity between existing documents and queries. While 

Fig. 6.6 Rotated plot of the query and Document 6 vectors in three-dimensional LSA vector 
space

6.5 Decision-Making: Choosing the Number of Dimensions
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the traditional LSA methods do not account for word ordering, because they assume 
a bag-of-words representation, newer methods extend the methods to incorporate 
word ordering. LSA can also be applied to TDMs that are based on n-grams or 
tokens larger than n = 1.

Despite the many benefits of LSA, there are limitations to its application. An 
LSA space is created for a particular document collection, and the results depend 
heavily on the type of weighting chosen and the number of singular vectors or latent 
factors retained. The decisions made by the analyst are particularly impactful, and 
in this sense, the analysis is both an art and a science.

Key Takeaways
• Latent semantic analysis (LSA) can uncover underlying or latent meaning 

in text.
• LSA uses singular value decomposition (SVD) to reduce the dimensional-

ity of the TDM.
• Cosine similarity based on the LSA space can be used to assess the close-

ness of term-term and document-document relationships.
• Queries based on pseudo-documents can be calculated based on the LSA 

space to assess similarity between pseudo-documents and actual docu-
ments represented in the space.
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Fig. 6.7 Scree plot showing variance explained by number of singular vectors
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Chapter 8
Probabilistic Topic Models

Abstract In this chapter, the reader is introduced to an unsupervised, probabilistic 
analysis model known as topic models. In topic models, the full TDM (or DTM) is 
broken down into two major components: the topic distribution over terms and the 
document distribution over topics. The topic models introduced in this chapter 
include latent Dirichlet allocation, dynamic topic models, correlated topic models, 
supervised latent Dirichlet allocation, and structural topic models. Finally, decision- 
making and topic model validation are presented.

Keywords Topic models · Probabilistic topic models · Latent Dirichlet allocation 
· Dynamic topic models · Correlated topic models · Structural topic models · 
Supervised latent Dirichlet allocation

8.1  Introduction

Topic models, also referred to as probabilistic topic models, are unsupervised 
methods to automatically infer topical information from text (Roberts et  al. 
2014). In topic models, topics are represented as a probability distribution over 
terms (Yi and Allan 2009). Topic models can either be single-membership mod-
els, in which documents belong to a single topic, or mixed-membership models, 
in which documents are a mixture of multiple topics (Roberts et al. 2014). In this 
chapter, we will focus on mixed-membership models. In these models, the num-
ber of topics, k, is a fixed number that is chosen prior to building the model.

Latent semantic analysis (LSA), which is covered in Chap. 6, and topic models 
are both dimension reduction methods and use the document-term matrix (DTM) or 
term-document matrix (TDM) as the input for the analysis. While LSA discovers 
hidden semantic content, topic models reveal thematic structure. LSA aims to 
uncover hidden meaning in text, while topic models focus on the underlying sub-
jects or themes that are present in the documents.

The most common type of topic model was created as an extension of the prob-
abilistic latent semantic indexing (pLSI) model proposed by Hofmann (1999), 
which is a probabilistic LSA model. Figure 8.1 shows how the specific dimension 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95663-3_8&domain=pdf
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reduction in LSA compares to that of topic models (Griffiths et  al. 2007). As 
detailed in Chap. 6, LSA uses singular value decomposition (SVD) to break down 
the full TDM or DTM into three smaller component matrices. From there, the 
number of singular vectors can be reduced to create a smaller dimensional repre-
sentation of the original. In topic modeling, the full TDM or DTM is broken down 
into two major components: the topic distribution over terms and the document 
distribution over topics. The first component tells us the importance of the terms in 
topics, and using that importance information, the second component tells us the 
importance of topics in the documents.

While there are many similarities between LSA and topic models, they also dif-
fer in many ways. Unlike LSA, topic models are generative probabilistic models. 
Based on the assigned probability, we can understand topics through their most 
likely terms. We are also able to better understand documents based on their most 
likely topics in their topic distribution. Unlike the latent factors in LSA, each topic 
is clearly identified and explainable.

The topic modeling examples in this chapter use text data based on 56 docu-
ments in which people describe the physical appearance of their pet dogs. There 
are four different breeds of dogs described in the documents: Bichon Frise, 
Dachshund, Great Dane, and Golden Retriever. The dogs vary in terms of height, 
weight, size, color, and fur. Each of the breeds has distinguishing features that are 
characteristic of that breed. For instance, Bichon Frises are small, fluffy dogs that 
are predominantly white and usually have black noses. On the other hand, a Great 
Dane is a very large dog with a short, straight coat that can be one of the several 
colors or a mix of colors. In the document sample, each dog type is described in 14 
of the 56 documents.

Fig. 8.1 LSA and topic models (Griffiths et al. 2007, p. 216)

8 Probabilistic Topic Models
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Preprocessing and parsing are applied to the 56 text documents, including the 
removal of stop words and stemming. Since some of the pet owners describe their 
dogs in terms of weight, we do not remove numbers from our corpus. The tfidf- 
weighted DTM is used, and the resulting vocabulary contains 96 terms. The first 
topic model that we will present is the latent Dirichlet allocation (LDA). Many of 
the alternative topic models use LDA as the basis of their model.

8.2  Latent Dirichlet Allocation (LDA)

The latent Dirichlet allocation (LDA) model is a generative probabilistic model 
introduced in Blei et al. (2002, 2003). LDA assumes a bag-of-words (BOW) model 
representation, meaning that term ordering in a document is not considered when 
building the topic model (Blei et al. 2003). Additionally, LDA assumes that docu-
ments are exchangeable, meaning that there is no meaningful sequential ordering of 
the documents in the collection (Blei et al. 2010). Another assumption of LDA is the 
independence of topics. Figure 8.2 provides an illustration of the LDA.

In the LDA model, K is the total number of topics, D is the total number of docu-
ments, and N is the total number of words in a document, where Wd, n is an observed 
word. Additionally, α is the Dirichlet parameter, and η is the topic hyperparameter. 
Each topic is a distribution over terms, with topic assignments Zd, n. Each document 
is a mixture of topics, with topic proportions θd, and each term is drawn from one of 
the topics, with topic assignments βk. Due to the intractability of computing the 
posterior distribution of the topics in a document, approximation methods are used, 
including mean field variational methods, expectation propagation, collapsed Gibbs 
sampling, and collapsed variational inference.

Using the data in the example, we build a model with four topics. We choose 
four topics as our starting point because we know that there are four dog breeds 
represented in the document collection. The top ten terms in each of the four top-
ics based on the expected topic assignment are depicted in Fig. 8.3. Based on the 
figure, Topic 2 can be described using the word white, and we would expect to see 
the documents describing Bichon Frises assigned to this topic. Topic 1 can be 
described by the terms long, tail, and short; Topic 3 can be described by the terms 
weigh, pound, and coat; and Topic 4 can be described by coat and ear. One of the 
strengths of topic models can be seen in Topic 3. The terms weigh and pound are 

Fig. 8.2 Plate representation of the random variables in the LDA model (Blei 2012, p. 23)

8.2 Latent Dirichlet Allocation (LDA)
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Fig. 8.3 Top ten terms per topic, four-topic model

synonyms, and they are most likely terms in the same topic. Unlike other methods, 
such as LSA, topic models are able to handle synonymous terms very well.

8.3  Correlated Topic Model (CTM)

The correlated topic model (CTM) is a hierarchical model that explicitly models 
the correlation of latent topics, allowing for a deeper understanding of relation-
ships among topics (Blei and Lafferty 2007). The CTM extends the LDA model by 
relaxing the independence assumption of LDA. As in the LDA model, CTM is a 
mixture model and documents belong to a mixture of topics. CTM uses the same 
methodological approach as LDA, but it creates a more flexible modeling approach 
than LDA by replacing the Dirichlet distribution with a logistic normal distribution 
and explicitly incorporating a covariance structure among topics (Blei and Lafferty 
2007). While this method creates a more computationally expensive topic model-
ing approach, it allows for more realistic modeling by allowing topics to be cor-
related. Additionally, Blei and Lafferty (2007) show that the CTM model 
outperforms LDA (Fig. 8.4).

As in the LDA model, K is the total number of topics, D is the total number of 
documents, and N is the total number of words in a document, where Wd, n  is an 
observed word. In the CTM model, ηd is the topic hyperparameter with mean μ and 
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Fig. 8.4 Plate representation of the random variables in the CTM model (Blei et al. 2007, p. 21)

Fig. 8.5 Expected topic proportions of four categories in the CTM model with no covariates

covariance matrix ∑. Again, each topic is a distribution over terms, with topic 
assignments Zd, n. Each document is a mixture of topics, with topic proportions θd, 
and each term is drawn from one of the topics, with topic assignments βk. A fast 
variational inference algorithm is used to estimate the posterior distribution of the 
topics, because, as in LDA, the calculation is intractable. However, in practice, the 
computation is inefficient, particularly in comparison to LDA.

Using the data from the example, we build a CTM model with k = 4 topics. The 
top terms and expected topic proportions of this model are presented in Fig. 8.5. 
When considering the topic proportions, since we know that the four dogs are 
equally represented in the document collection, we would expect the topics to have 
the same expected proportions if the topics are dog specific. Based on the figure, 
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Topic 1

Topic 4

Topic 3

Topic 2

Fig. 8.6 CTM topic correlation plot

they do not appear to be topics based on the dog breeds. However, it does appear 
that Topic 1 could be about Dachshunds, Topic 2 about Golden Retrievers, Topic 3 
about Bichon Frises, and Topic 4 about Great Danes. Topic 1 is the most prevalent 
expected topic, which contains short, long, and leg as the topic words. To try to 
explain the difference in topic proportions, we can look at a plot of the correlations 
among topics.

The CTM model has the advantage over the LDA model in that it models the 
correlations among topics. To investigate possible correlations, we can evaluate the 
correlations among topics and create an adjacency plot. Based on the adjacency plot 
in Fig. 8.6, in which no edges or straight lines connect the topic nodes, the four top-
ics in the CTM model are not correlated.

8.4  Dynamic Topic Model (DT)

The dynamic topic model models topics in a sequentially ordered document col-
lection to incorporate the evolution of topics over time by relaxing the exchange-
ability assumption of the LDA model (Blei and Lafferty 2006). The process 
involves splitting the data into smaller, time-dependent groups, such as by month 
or year. Dynamic topic models are built as an extension of the LDA model and 
thus do not model correlations among topics. The model uses the logistic normal 
distribution with mean α for each time period t (Fig. 8.7).

As in the LDA model, K is the total number of topics, D is the total number of 
documents, and N is the total number of words in a document. Wd, n is an observed 
word. Additionally, αt is the mean Dirichlet parameter α at time t. Each topic is 
a distribution over terms, with topic assignments Zt, d, n. Each document is a mix-
ture of topics, with topic proportions θt, d, and each term is drawn from one of the 
topics, with topic assignments βt, k at time t. The model can use variational 
Kalman filtering or a variational wavelet regression to estimate the parameters of 
the DT model.
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Fig. 8.7 Plate diagram of DT model (Blei and Lafferty 2006, p. 2)
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Fig. 8.8 Plate representation of the sLDA model (McAuliffe and Blei 2008, p. 3)

8.5  Supervised Topic Model (sLDA)

McAuliffe and Blei (2008) introduced the supervised latent Dirichlet allocation 
(sLDA), which is an extension of the LDA model with the use of labeled docu-
ments, as in the classification analysis covered in Chap. 9. The sLDA model has a 
class variable associated with each document, which serves as the response variable 
in the model (Fig. 8.8).

As in the LDA model, in the sLDA model, K is the total number of topics, D is 
the total number of documents, and N is the total number of words in a document, 
where Wd, n is an observed word. Additionally, α is the Dirichlet parameter, η and σ2 
are response parameters, and y is the response variable. Each topic is a distribution 
over terms, with topic assignments Zd, n. Each document is a mixture of topics, with 
topic proportions θd, and each term is drawn from one of the topics, with topic 
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assignments βk. Rather than treat the parameters as random variables, the model 
treats them as unknown constants. As in the LDA model, a variational expectation- 
maximization (VEM) procedure is used for the model estimation.

8.6  Structural Topic Model (STM)

The structural topic model (STM) combines three common topic models to create a 
semiautomated approach to modeling topics, which can also incorporate covariates 
and metadata in the analysis of text (Roberts et al. 2014). Additionally, unlike the 
LDA model, topics in STM can be correlated. This model is particularly useful in 
the topical analysis of open-ended textual data, such as survey data.

Since STM allows for the addition of covariates, additional information from the 
data can be used in the model. Furthermore, effect estimation can be performed to 
investigate and compare selected covariates and topics. In particular, STM has the 
ability to account for topical content and prevalence, allowing us to compare group-
ings in the data. For instance, to consider content, we could compare the specific 
words that are used to describe the different types of dogs. We could also explore the 
topic’s prevalence, or how often a topic occurs, for the different breeds.

STM is a mixture model, where each document can belong to a mixture of the 
designated k topics. Topic proportions, θd, can be correlated, and the topical preva-
lence can be impacted by covariates, X, through a regression model 
θd~LogisticNormal(Xγ, Σ). This capability allows each document to have its own 
prior distribution over topics, rather than sharing a global mean. For each word, w, 
the topic, zd, n, is drawn from a response-specific distribution. Conditioned on the 
topic, a word is chosen from a multinomial distribution over words with parameters, 
βzd, n. The topical content covariate, U, allows word use within a topic to vary by 
content (Fig. 8.9).

We build an STM model with four topics and include the dog breed as a content 
variable. The top ten words in each topic in the STM model are shown in Fig. 8.10.

By incorporating the dog breed as a covariate, we can consider how the breeds 
vary for each of the four topics. Figure 8.11 shows the expected proportion of topics 
for each of the topics and dog breeds.

8.7  Decision Making in Topic Models

8.7.1  Assessing Model Fit and Number of Topics

Although there is no single, uniform measure for choosing the number of topics in 
building a topic model, several methods have been proposed to help the analyst 
decide on the number of topics, k. Two methods aim to minimize the metrics to 
determine the optimal number of topics. Cao Juan et  al. (2009) uses minimum 
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Fig. 8.9 Plate diagram representation of the structural topic model (Roberts et al. 2013, p. 2)

Fig. 8.10 Top ten terms in topics for STM model

8.7 Decision Making in Topic Models 
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Fig. 8.11 Dog type content across topics

density measures to choose the number of topics. Arun et al. (2010) utilize a mea-
sure of divergence, where minimal divergence within a topic is preferred. Both 
methods use measures of distance to make decisions regarding k. On the other hand, 
Deveaud et al. (2014) utilize a measure maximizing the divergence across topics, 
and Griffiths and Steyvers (2004) maximize the log-likelihood of the data over dif-
ferent values of k. We use these four measures across 2–30 topics in building the 
LDA models, and the results are displayed in Fig. 8.12. Based on the figure, includ-
ing five topics in an LDA model appears to be a good tradeoff between the four 
measures and is highlighted in red.

8.7.2  Model Validation and Topic Identification

Topic models can be supervised or unsupervised and, thus, can rely on either inter-
nal or external validity measures, depending on the type of data being used. Model 
validity and interpretability should go hand-in-hand in topic model analysis, and 
therefore, we will consider them together. We will focus on internal validity 
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Fig. 8.12 Four measures across a number of topics, k, for 2–30 LDA topics

measures, since we performed an unsupervised LDA analysis. Mimno et al. (2011) 
suggest using topic size or the frequency of terms assigned to the topic as a good 
indicator of topic quality. Figure 8.13 displays the term frequency for the four-topic 
LDA solution and the five most probable terms in those topics.

Topics 4, 3, and 1, respectively, are the topics with the highest number of terms 
and are believed to be of higher quality than Topic 2. Topic models are built to iden-
tify latent topics existing in a document collection. In most cases, topic models are 
used to gain an understanding of the collection and to find ways to categorize and 
characterize documents. While the method is automatic, it requires interpretable 
output to be useful to the modeler. In this sense, it requires a combination of art and 
science. To this end, human coders are oftentimes used to evaluate the topics to 
determine if there is a natural label that can be assigned to the topic assignments 
from the topic model. For this reason, Chang et al. (2009) investigate the interpret-
ability of models compared to their quantitative performance measures. They pro-
pose the use of word intrusion and topic intrusion methods, which involve presenting 
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Fig. 8.13 Topic frequency and the five most probable terms per topic

the most probable terms and topics and an intruder. Then, human coders are 
instructed to identify the intruder. Another common approach is the use of coding 
by field experts in the relevant domain.

Alternatively, the model can be built on the sample, with a portion removed as a 
holdout sample. In doing so, two measures, perplexity and held-out likelihood, can 
be used to assess the model. Perplexity measures how well the model predicts the 
held-out sample. Perplexity values that are lower are preferred and indicate that the 
model is a good fit. We can also compute the log-likelihood of the held-out docu-
ments. The higher the log-likelihood, the better the model fit.

8.7.3  When to Use Topic Models

When determining if topic modeling should be used in the analysis, there are sev-
eral considerations to keep in mind. First, most topic model approaches are unsu-
pervised and assume that there is uncertainty in the documents. If the true topics of 
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the documents in the document collection are known, it may be more beneficial to 
apply a supervised analysis method, such as classification analysis, which is cov-
ered in Chap. 9. Topic models form soft clusters because they are typically mixed- 
membership models. The results of the analysis will produce the most likely topics 
to assign to documents and the most probable terms for each of the topics. If hard 
clusters are preferred and the topical content across terms and documents does not 
need to be considered simultaneously, cluster analysis can be used to cluster either 
terms or documents into hard clusters. Topic models, however, are particularly 
useful in making predictions. Since topic models are probabilistic models, predic-
tions can be made about new documents based on the model.
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