
#FIUSCIS
School of Computing & Information Sciences, Florida International University, Miami. 2018

• Distributed Computation with Spark
• Data Warehousing with Redshift
• Visualization with Tableau

Cloud Computing & Visualization
Workflows

1

Introduction
•Distributed Computation

-Elastic Map Reduce

-Spark
-Ganglia

•Data Warehousing

-Redshift
-RDS

•Visualization
-Tableau Desktop
-Tabeau Prep

!2

2

Distributed Computation
Spark is a computing platform designed to be fast and
general-purpose.

!3

3

Data Warehousing
Amazon Redshift is a fully managed, petabyte-scale data
warehouse service in the cloud.

!4

4

Visualization
Tableau is a Business Intelligence tool for visually analyzing data.

!5

5

Cloud Computing
•Cloud computing is shared pools of configurable computer system resources and
higher-level services that can be rapidly provisioned with minimal management
effort, often over the Internet.

•Third-party cloud providers enable organizations to focus on core tasks instead of
expending resources on computer infrastructure and maintenance.

!6

aws.amazon.com

6

!7

aws.amazon.com

7

!8

https://aws.amazon.com

8

!9

•Analytics
-EMR

•Database
-Redshift
-RDS

9

!10

https://www.tableau.com

10

!11

Distributed Computation with Spark

11

Apache Spark
•Spark is a Big Data Processing Engine — a Fast, General-
Purpose, Cluster-computing Platform.

•Handles the Scheduling, Distribution, and Monitoring of
applications spanning many worker machines.

•Has a Rich API to distribute data across the cluster, and
process it in parallel.

•Supports a variety of workloads such as Machine Learning
(MLlib), Streaming, interactive queries, graph programming
and SQL.

•Execution Frameworks have language support for Python, R,
Java, and Scala.

!12

12

Spark — Unified Stack
• The Spark project contains multiple high-level specialized

components (MLlib, Streaming, etc.).

• Spark’s main programming abstraction are Resilient
Distributed Datasets (RDDs), a data structure distributed
across nodes that can be worked on in parallel.

• Spark’s multiple components operate on RDDs, which allows
for close interoperability and tight integration.

• Applications that use multiple processing models can be
written without high maintenance and development costs.

!13

13

Spark — Main Benefits
Solve problems faster, and on a much larger scale

-Ease of Use — Rich, high level APIs

-Speed — Fast parallel execution

-General Engine — Combine processing models

-Open Source — Freely Available

•Makes developing General Purpose Distributed programs easier, less
painful.

•Reduces the management burden of maintaining separate tools.

•Allows the close Interoperability of high-level components

!14

14

Spark Core

!15

•Spark Core is also home to the API that defines resilient distributed datasets
(RDDs), which are Spark’s main programming abstraction.

•RDDs represent a collection of items distributed across many compute nodes that
can be manipulated in parallel.

•Spark Core contains the
basic functionality of Spark,
including components for
task scheduling, memory
management, fault recovery,
interacting with storage
systems, and more.

15

Spark — Data Processing
•Spark provides a simple way to parallelize applications across
clusters, and hides the complexity of distributed systems
programming, network communication, and fault tolerance.

•The system gives control to monitor, inspect, and tune
applications while allowing implementation of common tasks
quickly.

•The modular nature of the API (based on passing distributed
collections of objects) makes it easy to factor work into
reusable libraries and test it locally.

!16

16

Storage Layers for Spark
•Spark can create resilient distributed datasets, RDDs, from
any file stored in the Hadoop distributed filesystem (HDFS).

•Spark also support other storage systems supported by the
Hadoop APIs (including your local filesystem, Amazon S3,
Cassandra, Hive, HBase, etc.).

•It’s important to remember that Spark does not require
Hadoop.

•It simply has support for storage systems implementing the
Hadoop APIs.

!17

17

Spark REPL
•Spark can be used from Python, R, Java, or Scala.

•Spark itself is written in Scala, and runs on the Java Virtual Machine
(JVM).

•To run Spark on either your laptop or a cluster, all you need is an
installation of Java 6 or newer.

•If you wish to use the Python API you will also need a Python
interpreter (version 2.6 or newer).

•You don’t need to have Hadoop.
•Spark comes with interactive shells that enable ad hoc data analysis.

•Spark’s shells will feel familiar if you have used other shells such as
those in R, Python, and Scala,

!18

18

pyspark
•Python version of the Spark Shell.

!19

19

pyspark
•In Spark, we express our computation through operations on distributed
collections that are automatically parallelized across the cluster.

•These collections are called resilient distributed datasets, or RDDs.
•RDDs are Spark’s fundamental abstraction for distributed data and
computation.

!20

20

RDDs
•An RDD is simply a distributed collection of elements.

•In Spark all work is expressed as either creating new RDDs, transforming
existing RDDs, or calling operations on RDDs to compute a result.

•Spark automatically distributes the data contained in RDDs across your cluster
and parallelizes the operations you perform on them.

•An RDD in Spark is simply an immutable distributed collection of objects.

•Each RDD is split into multiple partitions, which may be computed on different
nodes of the cluster.

•RDDs can contain any type of Python, Java, or Scala objects, including user-
defined classes.

•Once created, RDDs offer two types of operations: transformations and actions.

!21

21

RDDs
•Transformations construct a new RDD from a previous one.

•Actions compute a result based on an RDD, and either return it to
the driver program or save it to an external storage system.

•Although you can define new RDDs any time, Spark computes them
only in a lazy fashion — that is, the first time they are used in an
action.

•Spark provides two ways to create RDDs
-loading an external dataset.
-Parallelizing a collection in your driver program.

!22

22

Spark Cluster
•Every Spark application consists of a driver
program that launches various parallel
operations on a cluster.

•The driver program contains your application’s
main function and defines distributed datasets
on the cluster, then applies operations to them.

•The driver communicates with a potentially
large number of distributed workers called
executors.

•A driver and its executors are together termed
a Spark application.

!23

23

!24
https://stackoverflow.com

24

Solve problems faster, and on a Much Larger Scale

!25

25

!26

Data Warehousing with Redshift

26

Data Warehouse
•A system used for reporting and data analysis.

•Central repositories of integrated data from one or more disparate
sources.

•A data warehouse can store current and historical data in a single
place.

•“Subject-oriented, integrated, time-variant and non-volatile collection
of data in support of a decision making process”.

•The data stored in the warehouse is uploaded from different
operational systems — systems used to pre-process the data in some
way.

•Data sources can also come from clusters such as Spark and Hadoop.

!27

27

Redshift
•Amazon Redshift is a fully managed, petabyte-scale data
warehouse service in the cloud.

•An Amazon Redshift data warehouse is a collection of
computing resources called nodes, which are organized into
a group called a cluster.

•Each cluster runs an Amazon Redshift engine and contains
one or more databases.

•Redshift differs from Amazon's other hosted database
offering, Amazon RDS, in its ability to handle analytics
workloads on big data datasets.

•Redshift allows you to analyze data using Business
Intelligence (BI) tools such as Spotfire and Tableau.

!28

28

Redshift
•Redshift is based on PostgreSQL.
•An Amazon Redshift data warehouse is an enterprise-class, relational
database query and management system.

•Amazon Redshift is built around industry-standard SQL, with added
functionality to manage very large datasets and support high-performance
analysis and reporting of that data.

•Amazon Redshift achieves efficient storage and optimum query performance
through a combination of massively parallel processing, columnar data
storage, and very efficient, targeted data compression encoding schemes.

!29

29

Redshift
•Redshift is based on industry-standard
PostgreSQL, so most existing SQL client
applications will work with only minimal changes.

•A cluster is composed of one or more compute
nodes.

•If a cluster is provisioned with two or more
compute nodes, an additional leader node
coordinates the compute nodes and handles
external communication.

•Your client application interacts directly only with
the leader node. Compute nodes are transparent
to external applications.

!30

30

!31

31

Redshift Cluster
Composed of three (3) main elements

-Leader Node
-Compute Node

-Node Slices

!32

32

Leader Node
•The leader node manages communications with client
programs and all communication with compute nodes.

•It parses and develops execution plans to carry out database
operations, in particular, the series of steps necessary to
obtain results for complex queries.

•Based on the execution plan, the leader node compiles code,
distributes the compiled code to the compute nodes, and
assigns a portion of the data to each compute node.

•The leader node distributes SQL statements to the compute
nodes only when a query references tables that are stored on
the compute nodes.

•All other queries run exclusively on the leader node.

!33

33

Compute Nodes
•The leader node compiles code for individual elements of the
execution plan and assigns the code to individual compute
nodes.

•The compute nodes execute the compiled code and send
intermediate results back to the leader node for final
aggregation.

•Each compute node has its own dedicated CPU, memory, and
attached disk storage, which are determined by the node type.

•As your workload grows, you can increase the compute
capacity and storage capacity of a cluster by increasing the
number of nodes, upgrading the node type, or both.

•You can start with a single 160 GB node and scale up to
multiple 16 TB nodes to support a petabyte of data or more

!34

34

Node Slices
•A compute node is partitioned into slices.

•Each slice is allocated a portion of the node's memory and
disk space, where it processes a portion of the workload
assigned to the node.

•The leader node manages distributing data to the slices and
apportions the workload for any queries or other database
operations to the slices.

•The slices then work in parallel to complete the operation.

•The number of slices per node is determined by the node
size of the cluster.

!35

35

Redshift Databases
•User data is stored on the compute nodes. SQL clients communicate with the
leader node, which in turn coordinates query execution with the compute
nodes.

•Amazon Redshift is a relational database management system (RDBMS), so it is
compatible with other RDBMS applications.

•Although it provides the same functionality as a typical RDBMS, Amazon
Redshift is optimized for high-performance analysis and reporting of very large
datasets.

•Amazon Redshift is based on PostgreSQL 8.0.2.

•Redshift and PostgreSQL have a number of very important differences that you
need to take into account as you design and develop your data warehouse
applications.

!36

36

!37

37

!38

38

!39

39

!40

40

!41

41

!42

42

!43

43

!44

44

!45

Persist large amounts of data.

45

!46

Visualization with Tableau

46

!47

47

!48

48

AWS Educate

!49

https://www.awseducate.com

49

!50

50

