Fall 2018: Introduction to Data Science

GIRI NARASIMHAN, SCIS, FIU
The Stream Model

- Data arrives in a stream
- Data is arriving rapidly
- Data cannot be stored in local storage, but in archival storage
- Archival storage, if any, is too large and cannot be accessed quickly
- Archival storage cannot be searched quickly
- If stream data is not processed immediately, then it is lost
- Decisions have to be made based on the data
- Quick approximate answer is often better than slow exact answer
Examples

- Wall street stock market data
- Satellite image data
- Internet and web traffic data
- Sensor data
 - 4-byte data every 0.1 sec = 3.5 MB/day
 - 1 million sensors in the ocean corresponds to one every 150 sq miles = 3.5 TB/day
 - 40 MB every sec
Queries

- Alert when temperature is above 25 degrees
- Sliding window concept
 - Maximum temperature for period X
 - Alert when average for X is above 25 degrees
 - Number of unique elements for X
Random Sampling: Pick a random integer from $[0 .. N-1]$ and if 0, process the stream data, else ignore it.

- Samples $1/N$ items

- It artificially slows down the stream to manageable levels
Sampling Woes

- **Stream**: Tuples (user, query, time); **Sampling**: 1 in 10
 - Each user has 1/10 of their queries processed
- **Query**: Fraction of typical user’s queries repeated over last month
- **Correct Answer**: Suppose user has s unique queries and d queries twice and NO queries more than twice in the last month; Answer = d/(s+d)
- **Problem**: Reported fraction would be wrong
 - In the sampled stream, s/10 are unique queries and d/100 queries appear twice
 - The remainder of the queries that should appear twice will appear once 18d/100
 - We will report d/(10s + 19d) [d/100 twice and s/10 + 18d/100 once]
Problem is that we are picking 1/10 of the queries.

We need to pick 1/10 of the users and pick all their queries.

If we can store 1/10 of the users, then for every query we can decide either to process or not.

Improved Solution: Hash user ID (actually, IP address) to 0 … 9
- Pick only those that hash to 0

Sampling Question: How to sample at rate of 1/70?

Sampling Question: How to sample at rate of 23/70?
Sampling can be applied if the filtering test is easy (e.g., hash value = 0? Temperature > 22 degrees?)

Sampling is harder if it involves a lookup (e.g., has this query been asked before by this user? Is this user among the top 10% of the frequent users list?)

Other techniques are available for filtering

- Bloom Filters
Example: Bloom Filters for Spam

- **White lists**: allowed email addresses
 - Assume we have 1 Billion allowed email addresses
 - Assume black list is much larger than white list
 - If each email address is 20 bytes, this takes 20 GB to store

- **Bloom Filters**: store white lists as bit hash arrays
 - Every email address is hashed and a 1 is stored in the location if it is in white list
 - In 1 GB, we can store hash array of size 8 Billion

- Strict White Lists: use bloom filters and then verify with real white list
- Stricter White List: use cascade of bloom filters
Bloom Filters: Test for Membership

- Array of n bits, initially all 0’s
- Collection of k hash functions. Each hash func maps a key to n buckets
- Given key K, compute K hash values and
 - Check that each location in bit array is a 1
 - Even if one is 0, then it fails the test
False Positive Rate

- Assume we have \(x \) targets and \(y \) darts
- Prob a dart will hit a specific target = \(1/x \)
- Prob a dart does not hit a specific target = \(1 - (1/x) = (x-1)/x \)
- Prob that \(y \) darts miss a specific target = \(((x-1)/x)^y \)
- Prob that \(y \) darts miss a specific target = \(e^{-y/x} \)
- Let \(x = 8 \); \(y = 1 \); Then prob of missing a target = \(e^{-1/8} \)
- Prob of hitting a target = false positive rate = \(1 - e^{-1/8} = 0.1175 \)
- If \(k = 2 \), the prob becomes \((1 - e^{-1/4})^2 = 0.0493 \)
False Positive Rate

- Let $n =$ bit array length = 8B
- Let $m =$ # of members = 1B
- Let $k =$ # of hash functions = 1
- Prob that a white list email hashes to a location = 10^{-9}
Counting distinct elements

- How many unique users in a given period?
- How many users (IP addresses) visited a webpage?
 - Each IP address is 4 bytes = 32 bits
 - 4 billion IP addresses are possible = 16 GB
 - If we need this for each webpage and there are thousands, then we cannot store in memory
Flajolet-Martin Algorithm

- For each element obtain a sufficiently long hash
 - Has to be more possible results of hash than elements in the universal set
 - Example, use 64 bits \(2^{64} \approx 10^{19}\) to hash URLs (4 Billion)
 - High prob that different elements get different hash values
 - Some fraction of these hash values will be “unusual”

- We will focus on the ones that have r 0s at the end of its hash value
 - Prob of hash value to end in r 0s is 2-r
 - Prob that m unique items have has values that don’t end in r 0s is \((1-2^{-r})^m = e^{-m2^{-r}}\)
Summary

- Look at the probability = $e^{-m2^{-r}}$
- If m is much larger than 2^r, then prob approaches 1
- If m is much smaller than 2^r, then prob approaches 0
- Thus 2^R is a good choice, where R is the largest tail of 0s
Moments

- i-th Moment
- Zeroth Moment
- First Moment
- Average = ?
- Variance = ?

$$\frac{1}{m} \sum_{s=1}^{m} \left(f_s - \frac{n}{m} \right)^2 = \frac{1}{m} \sum_{s=1}^{m} \left(f_s^2 - 2 \frac{n}{m} f_s + \left(\frac{n}{m} \right)^2 \right) = \left(\frac{1}{m} \sum_{s=1}^{m} f_s^2 \right) - \frac{n^2}{m^2}$$