
Introduction to  
Data Science
GIRI NARASIMHAN, SCIS, FIU

Giri Narasimhan

MapReduce Overview

! Sometimes a single computer cannot process data or takes too long –
traditional serial programming is not always enough
❑ Processor constraints
❑ Storage constraints
❑ Memory Constraints

! But when resources are pooled, it may be possible – break task into
parts and execute concurrently on multiple processors
❑ Challenge: What can run concurrently? How to parallelize?

! MapReduce: a programming paradigm to process large data sets

6/26/18

!2

Giri Narasimhan

History

! Original research done at Google (2004, Dean & Ghemawat)
! Now Apache Software Foundation provides Hadoop MapReduce

implementation
! Amazon version and others also exist

6/26/18

!3

Giri Narasimhan

Map-Reduce Overview

! First invented by Dean and Ghemawat in 2004
! Use (key, value) pairs (Inspired by Lisp)

❑ (length, [(9) (7 3) () (4,6,8)]) gives (1 2 0 3)
❑ (sum, [2 7 1 5 0 3]) gives 18

! Scalable parallel programming paradigm to address big data processing
❑ Map (fM, SetOfValues)
❑ Reduce (fR, SetOfValues)

! Programmer provides Map and Reduce and system handles rest

6/26/18

!4

Giri Narasimhan

Map-Reduce

! Ranking (e.g., PageRank) requires iterated matrix-vector multiplication
with matrix containing millions of rows and columns

! Computing with social networks involves graphs with hundreds of
millions of nodes and billions of edges

! Map-Reduce is a parallel programming paradigm, a software-stack
that will help to address big data processing
❑ Distributed file system with redundancy (e.g., Google FS, Hadoop DFS, CloudStore)
❑ Network of racks of processors forming a cluster

6/26/18

!5

Giri Narasimhan

MapReduce

! Framework used by writing 2 procedures – Map and Reduce
! Map

❑ Input is broken into chunks and each Map task is given one or more chunks
❑ Output of Map task: (key, value) pairs. Master controller sorts by keys
❑ Reduce task works on all pairs with same key and combines values as defined

6/26/18

!6

Giri Narasimhan

MapReduce
Execution
Overview

6/26/18

!7

Giri Narasimhan

MapReduce Example

! Input: repository of documents
! Output: word Frequencies (want freq of word in a collection of docs)
! Input element: one document
! Map task: For each document, for each of its words, output pair (w,1)
! Master Controller groups pairs by keys into a list, then merges into a file
! Reduce task: “Combines” items related to a word getting frequency of

single word
❑ If Combine is associative & commutative, can move work between map/reduce

6/26/18

!8

Giri Narasimhan

MapReduce Subtleties

! One document assigned to one Map task (many docs to same Map)
! Tradeoff between Map-Reduce: Map could do part of combine and

decrease work for Reduce, i.e., it could return (w.m) count of number of
occurrences of word w in one document

! Master Controller uses a hash function to distribute work into r tasks,
since it knows # of Reduce nodes. One bucket → one file for Reduce.
This helps to distribute work randomly among Reduce tasks/nodes.

! One word assigned to one Reduce task (many words to same Reduce)

6/26/18

!9

Giri Narasimhan

Skew

! Imbalance in workload to different tasks and their compute nodes
❑ More tasks means more overhead of creating tasks
❑ More tasks means greater ability to balance out load
❑ More documents and words than nodes
❑ Number of documents and their sizes may be known beforehand

6/26/18

!10

Giri Narasimhan

Node Failures

! Compute node failure: Restart
! Map node failure: Master node monitors, reassigns, and restarts task; all

Reduce tasks informed of new task/location and to discard old task/
location

! Reduce node failure: Master node monitors, reassigns and restarts task

6/26/18

!11

Giri Narasimhan

Matrix-Vector Multiplication

! Same vector in MM of every node
! Matrix M: n X n
! Vector v: length n
! Map step: focus on one element of M
! Output contribution by one element:
! Reduce step: Sum up all entries for key i to get result

6/26/18

!12

Giri Narasimhan

Matrix Vector Multiplication

6/26/18

!13

Matrix M

Vector v
Map <i,j> Reduce

<i>

((i,j), mij)

(j, vj)

((i,j), vj)

(i, mij X vj) xi

Giri Narasimhan

Matrix-Vector Multiplication

! Matrix M can be thought of as a relation with tuples ((i, j), mij)

! Vector v can be thought of as a relation (j, vj) generating tuples ((i, j), vj)

! Map process gets these tuples and outputs
❑ Relation (i, mij X vj)

❑ Can also be thought of as a 2-step map process, a join and a multiply

! Reduce: Grouping and aggregation produces M X v
❑ aggregates all tuples of the form (i, Z) and stores in cell (i)

6/26/18

!14

Giri Narasimhan

Map Reduce Sample Code

! https://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-
program-in-python/

6/26/18

!15

https://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/
https://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/
https://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/

Giri Narasimhan

What if vector is too large for MM

6/26/18

!16

Giri Narasimhan

Matrix-Matrix Multiplication

! Matrix M can be thought of as a relation with tuples ((i, j), mij)

! Matrix N can be thought of as a relation with tuples ((j, k), njk)

! Map: Join of M and N brings us closer to M X N by creating:
❑ Relation (i, j, k, mij X njk) creates tuple ((i, k), mij X njk)

! Grouping and aggregation produces M X N
❑ Reduce operation: aggregates all tuples with ((i, k), Z) and outputs Xik

6/26/18

!17

Giri Narasimhan

Relational DB operations using MapReduce

! Selection
! Projection
! Union, Intersection & Difference
! Natural Join
! Grouping and aggregation

6/26/18

!18

Giri Narasimhan

Example: Paths of length 2 in network

! If we want to know if there is a path of length 2 in a directed network from
vertex u to v, then we need to find a vertex w such that (u,w) and (w,v) are
directed edges in the network.

! Imagine that the directed network is given as a relation G with 2 columns
source and destination.

! This can be written as a join of 2 relations. How?
❑ Join G with G joining destination in the first G with the source in the second G

! This can also be written as a matrix multiplication of 2 adjacency matrices of a
network/graph. How?
❑ Now we can implement using a MapReduce framework

6/26/18

!19

Giri Narasimhan

Paths of length 2 in network

! This can also be written as a matrix multiplication of 2 adjacency
matrices of a network/graph. How?
❑ Multiplication of a row and a column

▪ Sum(product of corresponding entries)
❑ Reachable in 2 steps

▪ OR(AND of corresponding entries)
❑ Replace product with and operation; replace sum with or

6/26/18

!20

Giri Narasimhan

More complex example: Arbitrage

! Assume currency exchange rates as follows:
❑ EUR/CAD: 0.664 (1 CAD buys you .0.664 EUR)
❑ USD/EUR: 1.234
❑ CAD/USD: 1.398

! If you start with 10,000 CAD, then use it to buy
❑ 6,640 EUR
❑ 6,640 * 1.234 USD
❑ 6,640 * 1.234 * 1.398 CAD = 11,454.87 CAD

! Profit of 1,454.87 CAD or 14.5%. Not bad!
6/26/18

!21

Triangular
Arbitrage

Giri Narasimhan

Arbitrage using MapReduce

! Process currency market quotes
! Look for uncompleted offers to make the 3 currency exchanges

❑ Find all offers to BUY EUR with CAD, BUY USD with EUR, and BUY CAD with USD

! Find a triple that makes you a profit
! Now read this blog article that explains how to do it in Python/Hadoop

❑ https://medium.com/@rrfd/your-first-map-reduce-using-hadoop-with-python-and-
osx-ca3b6f3dfe78

6/26/18

!22

https://medium.com/@rrfd/your-first-map-reduce-using-hadoop-with-python-and-osx-ca3b6f3dfe78
https://medium.com/@rrfd/your-first-map-reduce-using-hadoop-with-python-and-osx-ca3b6f3dfe78

Giri Narasimhan

Running MapReduce

! Need Map code
! Need Reduce code
! Need Hadoop set up

❑ Hadoop Distributed File System (HDFS)
❑ Parallel Processing environment

! Blog tells you in detail how to set it up and run the MapReduce code
❑ https://medium.com/@rrfd/your-first-map-reduce-using-hadoop-with-python-and-

osx-ca3b6f3dfe78
❑

6/26/18

!23

https://medium.com/@rrfd/your-first-map-reduce-using-hadoop-with-python-and-osx-ca3b6f3dfe78
https://medium.com/@rrfd/your-first-map-reduce-using-hadoop-with-python-and-osx-ca3b6f3dfe78

Giri Narasimhan

Many more examples …

! https://datascienceguide.github.io/map-reduce

6/26/18

!24

https://datascienceguide.github.io/map-reduce

Giri Narasimhan

General MapReduce Steps

! Record Reader – split data & prepare for Map
! Map
! Combiner (Optional) – aggregates based on intermediate keys
! Partitioner – applies hash function & dispatches for Reduce
! Shuffle and Sort – groups keys on Reduce to simplify work
! Reduce
! Output Format

6/26/18

!25

