Introduction to Data Science GIRI NARASIMHAN, SCIS, FIU

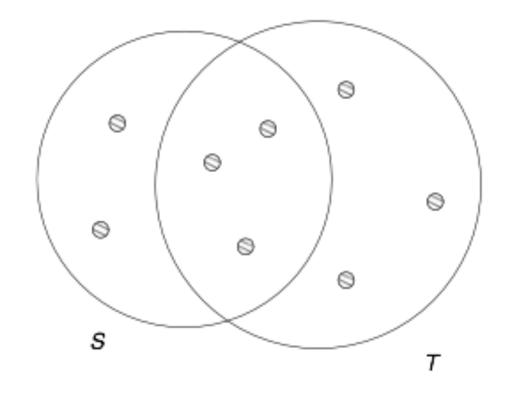
Similarity

- Fundamental problem in Data Science
 - Web pages
 - Documents
 - Customer/User profiles (Collaborative Filtering)
 - Complaint histories
 - Disease profiles
 - Detecting Plagiarism

Jaccard Similarity

Defined on 2 sets, S and T SIM(S,T) = IS n TI/IS u TI

- E.g., Documents and Web pages can be thought of as set of words
- Bag Similarity uses bags instead of sets



3

Figure 3.1: Two sets with Jaccard similarity 3/8

Applications of Jaccard Similarity

- Detecting Plagiarism
- Detecting Mirror pages
- Detecting same source articles – used by news aggregators
- Collaborative filtering users recommended items liked by users with similar tastes
 - Online purchases
 - Movie ratings

Shingling of Documents

k-Shingles

- Any substring of a document of length k
- Example: If document D is abcdabd then the set of 2-shingles = {ab, bc, cd, da, bd}
- Since for large k, not all possible ksingles will be found, hashing is often used

- Compacted sets of shingles are called signatures
- Matrix Representations

Picking k for Shingling

- If k is too small, then almost all documents will be similar
- If k is too large, it can miss small common phrases
- Large k is needed for large docs
- For large k, hashing is used

Emails: k = 5

Larger documents: k = 9

Shingles from Words

For news items, choose shingle as: a stop word and next 2 words

Shingles set size

- Can be large and can be roughly 4 times original document if each hash can be stored in 4 bytes.
- Need to replace large sets by small signatures
- Next we discuss how to construct small signatures

Characteristic Matrix

To create small signatures, we imagine the Characteristic Matrix

Characteristic Matrix: way to visualize a Set of sets and their Elements

- **Rows** Elements
- Columns Sets of elements
- □ Matrix 0/1 values
- Matrix is assumed to be sparse

Element	S ₁	S ₂	S₃	S ₄
а	1	0	0	1
b	0	0	1	0
с	0	1	0	1
d	1	0	1	1
е	0	0	1	0

9

6/26/18

Small Signatures and MinHash

- Permute the rows
- Minhash(S_i) = row number of the first 1 in column S_i
- Minhash of the 4 columns are:

□ (a, c, b, a)

- \triangleright Pr{Minhash(S_i) = Minhash(S_i)} equals
 - □ Jaccard similarity SIM(S_i, S_j)
- \blacktriangleright MinhashSignature(S_i) = result from N perm

□ Say N = 100

Element	S ₁	S ₂	S ₃	S_4	
b	0	0	1	0	
е	0	0	1	0	
а	1	0	0	1	
d	1	0	1	1	
С	0	1	0	1	

Computing Minhash Signatures

Permuting a large characteristic matrix is too expensive

Simulate permutations using hashing

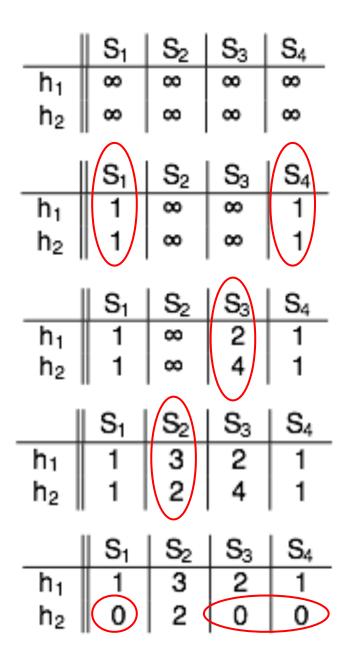
- □ It is a close **approximation**, except for collisions
- □ Ignore **collisions**, which cause **errors** in the computation
- Sparsity helps in lowering the errors
- Instead of N permutations, we pick N hash functions

h₁, h₂, ..., h_N

Computing Minhash Signatures

- Given hash function $h_1, h_2, ..., h_N$, we want to compute MinHash values
- Let SIG(k,c) = signature matrix for k-th hash function and column c
- For row r, compute $h_1(r)$, $h_2(r)$, ..., $h_N(r)$
- If col c has 0 in row r, do nothing
- Else, for each k = 1, 2, ..., N,
 - set SIG(k,c) = min{SIG(k,c), $h_k(r)$ }
- Initialize all SIG values to infty

Row	S ₁	S ₂	S ₃	S ₄	x + 1 mod 5	3x + 1 mod 5
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3



		S		S_2		S ₃		S4		13	
h ₁	h ₁ 1		1 3 0 2		(0 1					
h₁ 1 h₂ 0			2		0		0				
Pair				True S	SIM Approx SIM						
	(1,2)			0 0							
	(1	,4)		2/3 1							
	(3,4)			1/5 1/2							
Row	S ₁	S ₂	S ₃	S 4	x + 1 mod 5		5	3x +	3x + 1 mod 5		
0	1	0	0	1	1				1		
1	0	0	1	0	2				4		
2	0	1	0	1	3				2		
3	1	0	1	1	4				0		
4	0	0	1	0	O				3		

Minhash Overview

Takes very large documents and computes small signatures such that
 Jaccard Similarity is retained

Example: 1 M docs, N = 250 hash functions; 4 bytes per hash value

- □ 1KB per doc signature
- □ 1 GB to store all signatures
- 0.5 Trillion pairs of docs
- Similarity computation = 1 microsec
- □ To compute all pairs = ~ 6 days (= 0.5184 trillion microsecs)

Find Closest Pair of Documents

- Cannot wait 6 days for an answer
- Clustering algorithms need this repeatedly
- Approach: Use a special hash function
 - □ Hash items so that similar items are likely to end up in the same bucket.
 - Avoid pairs in different buckets & reduce number of pairs to inspect
- These hash functions are called Locality Sensitive Hashing (LSH)
- Small Prob of error due to hashing
 - False Positives (cause extra work) and False Negatives (miss good pairs)

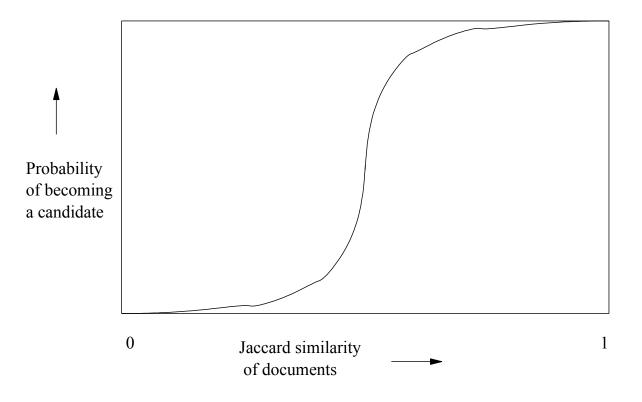
LSH for MinHash

- Divide signature matrix into b bands of r rows each
- For each band, hash column vector of r items to large # of buckets
- Use same hash function for each band but use separate buckets
 - Use different sets of buckets for different bands
- Any pair that appears in the same bucket in any band becomes a candidate for further inspection.All other pairs are discarded.
- If 2 columns are similar, then they must be identical in at least 1 band
- Each pair gets b chances to be in the same bucket

Analysis of LSH with Banding

- Assume b bands and r rows
- Consider a pair of docs with similarity value s
- Prob that their Minhash signatures agree in any particular row = s
- We want prob that this pair of docs becomes a candidate
- Prob signatures agree in all rows of one band = s^r
- Prob signature disagrees in at least one row of a band = 1 s^r
- Prob signatures disagree in at least one row in each band = (1-s^r)^b
- Prob that signatures agree in all rows of at least one band = 1 (1-s^r)^b

Behavior of 1 - (1-sr)b



- Independent of b and r
 - \Box Curve has to get from (0,0) to (1,1)
 - It's always an S-curve
- Threshold = value of s at steep rise
 - > threshold, pair is likely a candidate
 - Set (b,r) to achieve desired threshold

LSH-based Algorithm for Similar Items

- Pick k and construct k-shingles from each document
- Pick t, b, and r (t ~ (1/b)^{1/r})
- Pick n = br hash functions
- Apply LSH technique, find candidates, check true similarity

Distance Measures

A distance measure D must satisfy the following properties

- **Non-negativity**: $D(x,y) \ge 0$
 - D(x,y) = 0 if and only if x = y
- **Symmetry**: D(x,y) = D(y,x)

Triangle Inequality: $D(x,y) \le D(x,z) + D(z,y)$

Important Distance Measures

- $\blacktriangleright D([x1, ..., xn], [y1, ..., yn]) = (|x1-y1|^r + ... + |xn-yn|^r)^{1/r}$
- If r= 2, this is the standard Euclidean distance
- Other values are commonly referred to as Euclidean norms
- Jaccard Distance = 1 Jaccard Similarity
- Cosine Distance = Dot Product of 2 vectors
- Edit Distance = measure of changes to turn x into y
- Hamming Distance = # of components in which 2 vectors differ

Finding Identical Items

- LSH works for items with low similarity
- What if we only want to find identical items
 - Not good just to look at say first few characters
 - Not good to compare entire documents to check
 - Even if we hashed, we would need too many buckets
 - Idea: Compute hash value based on random positions

Finding near-identical items

Advanced topic – please read from text.