Introduction to Data Science

GIRI NARASIMHAN, SCIS, FIU
Jaccard Similarity

- Defined on 2 sets, S and T
 \[\text{SIM}(S, T) = \frac{|S \cap T|}{|S \cup T|} \]
- E.g., Documents and Web pages can be thought of as set of words
- *Bag Similarity* uses *bags* instead of sets

Figure 3.1: Two sets with Jaccard similarity 3/8
Permute the rows

\[\text{Minhash}(S_i) = \text{row number of the first 1 in column } S_i \]

Minhash of the 4 columns are:

- \((a, c, b, a) \)

\[\Pr\{\text{Minhash}(S_i) = \text{Minhash}(S_j)\} \text{ equals } \]

- Jaccard similarity \(\text{SIM}(S_i, S_j) \)

\[\text{MinhashSignature}(S_i) = \text{result from N perm} \]

- Say \(N = 100 \)
Computing Minhash Signatures

- **Permuting** a large characteristic matrix is too **expensive**
- **Simulate** permutations using **hashing**
 - It is a close **approximation**, except for collisions
 - Ignore **collisions**, which cause **errors** in the computation
 - **Sparsity** helps in lowering the errors
 - Instead of N permutations, we pick N hash functions
 - h_1, h_2, \ldots, h_N
Computing Minhash Signatures

- Given hash function h_1, h_2, \ldots, h_N, we want to compute MinHash values
- Let $\text{SIG}(k,c) =$ signature matrix for k-th hash function and column c
- For row r, compute $h_1(r), h_2(r), \ldots, h_N(r)$
- If col c has 0 in row r, do nothing
- Else, for each $k = 1, 2, \ldots, N$,
 - set $\text{SIG}(k,c) = \min\{\text{SIG}(k,c), h_k(r)\}$
- Initialize all SIG values to infty
<table>
<thead>
<tr>
<th>Pair</th>
<th>True SIM</th>
<th>Approx SIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1,4)</td>
<td>2/3</td>
<td>1</td>
</tr>
<tr>
<td>(3,4)</td>
<td>1/5</td>
<td>1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Row</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>$x + 1 \mod 5$</th>
<th>$3x + 1 \mod 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Minhash Overview

- Takes very large documents and computes small signatures such that
 - Jaccard Similarity is (approximately) retained

- **Example**: 1 M docs, N = 250 hash functions; 4 bytes per hash value
 - 1 KB per doc signature
 - 1 GB to store all signatures for all 1 M docs
 - 0.5 Trillion pairs of docs
 - Similarity computation = 1 microsec
 - To compute all pairs = ~ 6 days (= 0.5184 trillion microsecs)
Find Closest Pair of Documents

- Cannot wait 6 days for an answer
- Clustering algorithms need this repeatedly
- **Approach**: Use a special hash function
 - Hash items so that similar items are likely to end up in the same bucket.
 - Avoid pairs in different buckets & reduce number of pairs to inspect
- These hash functions are called **Locality Sensitive Hashing (LSH)**
- Small Prob of error due to hashing
 - False Positives (cause extra work) and False Negatives (miss good pairs)
LSH for MinHash

- Divide signature matrix into b bands of r rows each
- For each band, hash column vector of r items to large # of buckets
- Use same hash function for each band but use separate buckets
 - Use different sets of buckets for different bands
- Any pair that appears in the same bucket in any band becomes a candidate for further inspection. All other pairs are discarded.
- If 2 columns are similar, then they must be identical in at least 1 band
- Each pair gets b chances to be in the same bucket
Assume b bands and r rows

Consider a pair of docs with similarity value s

Prob that their Minhash signatures agree in any particular row = s

We want prob that this pair of docs becomes a candidate

Prob signatures agree in all rows of one band = s^r

Prob signature disagrees in at least one row of a band = $1 - s^r$

Prob signatures disagree in at least one row in each band = $(1-s^r)^b$

Prob that signatures agree in all rows of at least one band = $1 - (1-s^r)^b$
Behavior of $1 - (1-s^r)^b$

- **Independent of b and r**
 - Curve has to get from (0,0) to (1,1)
 - It’s always an **S-curve**

- **Threshold = value of s at steep rise**
 - $> \text{threshold}$, pair is likely a candidate
 - Set (b,r) to achieve desired threshold
LSH-based Algorithm for Similar Items

- Pick k and construct k-shingles from each document
- Pick t, b, and r ($t \sim (1/b)^{1/r}$)
- Pick $n = br$ hash functions
- Apply LSH technique, find candidates, check true similarity
Distance Measures

A distance measure D must satisfy the following properties

- **Non-negativity**: $D(x,y) \geq 0$
 - $D(x,y) = 0$ if and only if $x = y$

- **Symmetry**: $D(x,y) = D(y,x)$

- **Triangle Inequality**: $D(x,y) \leq D(x,z) + D(z,y)$
Important Distance Measures

- \(D([x_1, \ldots, x_n], [y_1, \ldots, y_n]) = (|x_1-y_1|^r + \ldots + |x_n-y_n|^r)^{1/r} \)
- If \(r = 2 \), this is the standard **Euclidean distance**
- Other values are commonly referred to as **Euclidean norms**
- **Jaccard Distance** = 1 – Jaccard Similarity
- **Cosine Distance** = Dot Product of 2 vectors
- **Edit Distance** = measure of changes to turn \(x \) into \(y \)
- **Hamming Distance** = # of components in which 2 vectors differ
Finding Identical Items

- LSH works for items with low similarity
- What if we only want to find identical items
 - Not good just to look at say first few characters
 - Not good to compare entire documents to check
 - Even if we hashed, we would need too many buckets
 - **Idea**: Compute hash value based on random positions
Finding near-identical items

- Advanced topic – please read from text.
Streaming
The Stream Model

- Data arrives in a stream
- Data is arriving rapidly
- Data cannot be stored in local storage, but in archival storage
- Archival storage, if any, is too large and cannot be accessed quickly
- Archival storage cannot be searched quickly
- If stream data is not processed immediately, then it is lost
- Decisions have to be made based on the data
- Quick approximate answer is often better than slow exact answer
Examples

- Wall street stock market data
- Satellite image data
- Internet and web traffic data
- Sensor data
 - 4-byte data every 0.1 sec = 3.5 MB/day
 - 1 million sensors in the ocean corresponds to one every 150 sq miles = 3.5 TB/day
 - 40 MB every sec

Modern Times
Queries

- Alert when temperature is above 25 degrees
- Sliding window concept
 - Maximum temperature for period X
 - Alert when average for X is above 25 degrees
 - Number of unique elements for X
Random Sampling: Pick a random integer from [0 .. N-1] and if 0, process the stream data, else ignore it.

- Samples 1/N items

- It artificially slows down the stream to manageable levels
Sampling Woes

- **Stream**: Tuples (user, query, time); **Sampling**: 1 in 10
 - Each user has 1/10 of their queries processed
- **Query**: Fraction of typical user’s queries repeated over last month
- **Correct Answer**: Suppose user has s unique queries and d queries twice and NO queries more than twice in the last month; Answer = d/(s+d)
- **Problem**: Reported fraction would be wrong
 - In the sampled stream, s/10 are unique queries and d/100 queries appear twice
 - The remainder of the queries that should appear twice will appear once 18d/100
 - We will report d/(10s + 19d) [d/100 twice and s/10 + 18d/100 once]
Problem is that we are picking 1/10 of the queries
We need to pick 1/10 of the users and pick all their queries
If we can store 1/10 of the users, then for every query we can decide either to process or not

Improved Solution: Hash user ID (actually, IP address) to 0 … 9
 - Pick only those that hash to 0

Sampling Question: How to sample at rate of 1/70?
Sampling Question: How to sample at rate of 23/70?
Sampling

- Sampling can be applied if the filtering test is easy (e.g., hash value = 0? Temperature > 22 degrees?)
- Sampling is harder if it involves a lookup (e.g., has this query been asked before by this user? Is this user among the top 10% of the frequent users list?)
- Other techniques are available for filtering
 - Bloom Filters
Example: Bloom Filters for Spam

- **White lists**: allowed email addresses
 - Assume we have 1 Billion allowed email addresses
 - Assume black list is much larger than white list
 - If each email address is 20 bytes, this takes 20 GB to store

- **Bloom Filters**: store white lists as bit hash arrays
 - Every email address is hashed and a 1 is stored in the location if it is in white list
 - In 1 GB, we can store hash array of size 8 Billion

- **Strict White Lists**: use bloom filters and then verify with real white list
- **Stricter White List**: use cascade of bloom filters
Bloom Filters: Test for Membership

- Array of n bits, initially all 0’s
- Collection of k hash functions. Each hash func maps a key to n buckets
- Given key K, compute K hash values and
 - Check that each location in bit array is a 1
 - Even if one is 0, then it fails the test
False Positive Rate

- Assume we have \(x \) targets and \(y \) darts
- Prob a dart will hit a specific target = \(1/x \)
- Prob a dart does not hit a specific target = \(1 - (1/x) = (x-1)/x \)
- Prob that \(y \) darts miss a specific target = \((x-1)/x)^y\)
- Prob that \(y \) darts miss a specific target = \(e^{-y/x} \)
- Let \(x = 8 \); \(y = 1 \); Then prob of missing a target = \(e^{-1/8} \)
- Prob of hitting a target = false positive rate = \(1 - e^{-1/8} = 0.1175 \)
- If \(k = 2 \), the prob becomes \((1 - e^{-1/4})^2 = 0.0493\)
False Positive Rate

- Let $n =$ bit array length = 8B
- Let $m =$ # of members = 1B
- Let $k =$ # of hash functions = 1
- Prob that a white list email hashes to a location = 10^{-9}
Counting distinct elements

- How many unique users in a give period?
- How many users (IP addresses) visited a webpage?
 - Each IP address is 4 bytes = 32 bits
 - 4 billion IP addresses are possible = 16 GB
 - If we need this for each webpage and there are thousands, then we cannot store in memory
Flajolet-Martin Algorithm

- For each element obtain a sufficiently long hash
 - Has to be more possible results of hash than elements in the universal set
 - Example, use 64 bits ($2^{64} \sim 10^{19}$) to hash URLs (4 Billion)
 - High prob that different elements get different hash values
 - Some fraction of these hash values will be “unusual”

- We will focus on the ones that have r 0s at the end of its hash value
 - Prob of hash value to end in r 0s is 2^{-r}
 - Prob that m unique items have has values that don’t end in r 0s is $(1-2^{-r})^m = e^{-m2^{-r}}$
Summary

- Look at the probability $e^{-m2^{-r}}$
- If m is much larger than 2^r, then prob approaches 1
- If m is much smaller than 2^r, then prob approaches 0
- Thus 2^R is a good choice, where R is the largest tail of 0s
Moments

- i-th Moment
- Zeroth Moment
- First Moment
- Average = ?
- Variance = ?

\[
\frac{1}{m} \sum_{s=1}^{m} \left(f_s - \frac{n}{m} \right)^2 = \frac{1}{m} \sum_{s=1}^{m} \left(f_s^2 - 2 \frac{n}{m} f_s + \left(\frac{n}{m} \right)^2 \right) = \left(\frac{1}{m} \sum_{s=1}^{m} f_s^2 \right) - \frac{n^2}{m^2}
\]