Introduction to Data Science GIRI NARASIMHAN, SCIS, FIU

Jaccard Similarity

Defined on 2 sets, S and T SIM(S,T) = IS n TI/IS u TI

- E.g., Documents and Web pages can be thought of as set of words
- Bag Similarity uses bags instead of sets

2

Figure 3.1: Two sets with Jaccard similarity 3/8

Small Signatures and MinHash

- Permute the rows
- Minhash(S_i) = row number of the first 1 in column S_i
- Minhash of the 4 columns are:

□ (a, c, b, a)

- \triangleright Pr{Minhash(S_i) = Minhash(S_i)} equals
 - □ Jaccard similarity SIM(S_i, S_j)
- \blacktriangleright MinhashSignature(S_i) = result from N perm

□ Say N = 100

Element	S ₁	S ₂	S₃	S 4	
b	0) 0 1		0	
е	0	0	1	0	
а	1	0	0	1	
d	1	0	1	1	
С	0	1	0	1	

Computing Minhash Signatures

Permuting a large characteristic matrix is too expensive

Simulate permutations using hashing

- □ It is a close **approximation**, except for collisions
- □ Ignore **collisions**, which cause **errors** in the computation
- Sparsity helps in lowering the errors
- Instead of N permutations, we pick N hash functions

h₁, h₂, ..., h_N

Computing Minhash Signatures

- ▶ Given hash function $h_1, h_2, ..., h_N$, we want to compute MinHash values
- Let SIG(k,c) = signature matrix for k-th hash function and column c
- For row r, compute $h_1(r)$, $h_2(r)$, ..., $h_N(r)$
- If col c has 0 in row r, do nothing
- Else, for each k = 1, 2, ..., N,
 - set SIG(k,c) = min{SIG(k,c), $h_k(r)$ }
- Initialize all SIG values to infty

Row	S ₁	S ₂	S ₃	S ₄	x + 1 mod 5	3x + 1 mod 5
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

		S		S_2		S ₃	1	S4		6	
h ₁		1		3	(0		1			
h ₂	n₂∥ 0			2		0		0			
	Po	air		True S	SIM	Approx SIM					
	(1	,2)		0		0					
	(1	,4)		2/3		1					
	(3	,4)		1/5	5	1/2					
Row	∥ S ₁	S ₂	S ₃	S 4	x +	1 mod	5	3x +	1 m	od 5	
0	1	0	0	1	1				1		
1	0	0	1	0	2				4		
2	0	1	0	1	3				2		
3	1	0	1	1	4				0		
4	0	0	1	0	0				3		

h

 h_2

Minhash Overview

Takes very large documents and computes small signatures such that
 Jaccard Similarity is (approximately) retained

Example: 1 M docs, N = 250 hash functions; 4 bytes per hash value

- □ 1 KB per doc signature
- □ 1 GB to store all signatures for all 1 M docs
- 0.5 Trillion pairs of docs
- Similarity computation = 1 microsec
- \Box To compute all pairs = ~ 6 days (= 0.5184 trillion microsecs)

Find Closest Pair of Documents

- Cannot wait 6 days for an answer
- Clustering algorithms need this repeatedly
- Approach: Use a special hash function
 - □ Hash items so that similar items are likely to end up in the same bucket.
 - Avoid pairs in different buckets & reduce number of pairs to inspect
- These hash functions are called Locality Sensitive Hashing (LSH)
- Small Prob of error due to hashing
 - False Positives (cause extra work) and False Negatives (miss good pairs)

LSH for MinHash

- Divide signature matrix into b bands of r rows each
- For each band, hash column vector of r items to large # of buckets
- Use same hash function for each band but use separate buckets
 - Use different sets of buckets for different bands
- Any pair that appears in the same bucket in any band becomes a candidate for further inspection. All other pairs are discarded.
- If 2 columns are similar, then they must be identical in at least 1 band
- Each pair gets b chances to be in the same bucket

Q

Analysis of LSH with Banding

- Assume b bands and r rows
- Consider a pair of docs with similarity value s
- Prob that their Minhash signatures agree in any particular row = s
- We want prob that this pair of docs becomes a candidate
- Prob signatures agree in all rows of one band = s^r
- Prob signature disagrees in at least one row of a band = 1 s^r
- Prob signatures disagree in at least one row in each band = (1-s^r)^b
- Prob that signatures agree in all rows of at least one band = 1 (1-s^r)^b

Behavior of 1 - (1-sr)b

- Independent of b and r
 - \Box Curve has to get from (0,0) to (1,1)
 - It's always an S-curve
- Threshold = value of s at steep rise
 - > threshold, pair is likely a candidate
 - Set (b,r) to achieve desired threshold

LSH-based Algorithm for Similar Items

- Pick k and construct k-shingles from each document
- Pick t, b, and r (t ~ (1/b)^{1/r})
- Pick n = br hash functions
- Apply LSH technique, find candidates, check true similarity

Distance Measures

A distance measure D must satisfy the following properties

- **Non-negativity**: $D(x,y) \ge 0$
 - D(x,y) = 0 if and only if x = y
- **Symmetry**: D(x,y) = D(y,x)

Triangle Inequality: $D(x,y) \le D(x,z) + D(z,y)$

Important Distance Measures

- $\blacktriangleright D([x1, ..., xn], [y1, ..., yn]) = (|x1-y1|^r + ... + |xn-yn|^r)^{1/r}$
- If r= 2, this is the standard Euclidean distance
- Other values are commonly referred to as Euclidean norms
- Jaccard Distance = 1 Jaccard Similarity
- Cosine Distance = Dot Product of 2 vectors
- Edit Distance = measure of changes to turn x into y
- Hamming Distance = # of components in which 2 vectors differ

Finding Identical Items

- LSH works for items with low similarity
- What if we only want to find identical items
 - Not good just to look at say first few characters
 - Not good to compare entire documents to check
 - Even if we hashed, we would need too many buckets
 - Idea: Compute hash value based on random positions

Finding near-identical items

Advanced topic – please read from text.

Streaming

6/26/18

The Stream Model

- Data arrives in a stream
- Data is arriving rapidly
- Data cannot be stored in local storage, but in archival storage
- Archival storage, if any, is too large and cannot be accessed quickly
- Archival storage cannot be searched quickly
- If stream data is not processed immediately, then it is lost
- Decisions have to be made based on the data
- Quick approximate answer is often better than slow exact answer

Examples

- Wall street stock market data
- Satellite image data
- Internet and web traffic data
- Sensor data
 - □ 4-byte data every 0.1 sec = 3.5 MB/day
 - 1 million sensors in the ocean corresponds to one e
 - □ 40 MB every sec

Queries

- Alert when temperature is above 25 degrees
- Sliding window concept
 - Maximum temperature for period X
 - Alert when average for X is above 25 degrees
 - Number of unique elements for X

Standard Trick: Random Sampling

- Random Sampling: Pick a random integer from [0 .. N-1] and if 0, process the stream data, else ignore it.
 - Samples 1/N items
- It artificially slows down the stream to manageable levels

Sampling Woes

Stream: Tuples (user, query, time); Sampling: 1 in 10

- Each user has 1/10 of their queries processed
- Query: Fraction of typical user's queries repeated over last month
- Correct Answer: Suppose user has s unique queries and d queries twice and NO queries more than twice in the last month; Answer = d/(s+d)

Problem: Reported fraction would be wrong

- □ In the sampled stream, s/10 are unique queries and d/100 queries appear twice
- □ The remainder of the queries that should appear twice will appear once 18d/100
- □ We will report d/(10s + 19d) [d/100 twice and s/10 + 18d/100 once

Improved Solution for Sampling Woes

- Problem is that we are picking 1/10 of the queries
- We need to pick 1/10 of the users and pick all their queries
- If we can store 1/10 of the users, then for every query we can decide either to process or not
- Improved Solution: Hash user ID (actually, IP address) to 0 ... 9
 - Pick only those that hash to 0
- Sampling Question: How to sample at rate of 1/70?
- Sampling Question: How to sample at rate of 23/70?

Sampling

- Sampling can be applied if the filtering test is easy (e.g., hash value = 0? Temperature > 22 degrees?)
- Sampling is harder if it involves a lookup (e.g., has this query been asked before by this user? Is this user among the top 10% of the frequent users list?)
- Other techniques are available for filtering
 - Bloom Filters

Example: Bloom Filters for Spam

White lists: allowed email addresses

- Assume we have 1 Billion allowed email addresses
- Assume black list is much larger than white list
- □ If each email address is 20 bytes, this takes 20 GB to store

Bloom Filters: store white lists as bit hash arrays

- Every email address is hashed and a 1 is stored in the location if it is in white list
- □ In 1 GB, we can store hash array of size 8 Billion
- Strict White Lists: use bloom filters and then verify with real white list

Stricter White List: use cascade of bloom filters

Bloom Filters: Test for Membership

- Array of n bits, initially all 0's
- Collection of k hash functions. Each hash func maps a key to n buckets
- Given key K, compute K hash values and
 - Check that each location in bit array is a 1
 - Even if one is 0, then it fails the test

False Positive Rate

- Assume we have x targets and y darts
- Prob a dart will hit a specific target = 1/x
- Prob a dart does not hit a specific target = 1 (1/x) = (x-1)/x
- Prob that y darts miss a specific target = $((x-1)/x)^y$
- Prob that y darts miss a specific target = $e^{-y/x}$
- Let x = 8B; y = 1B; Then prob of missing a target = $e^{-1/8}$
- Prob of hitting a target = false positive rate = $1 e^{-1/8} = 0.1175$
- ▶ If k = 2, the prob becomes $(1 e^{-1/4})^2 = 0.0493$

(1-h)^{1/h} = e f small h

False Positive Rate

- Let n = bit array length = 8B
- \blacktriangleright Let m = # of members = 1B
- Let k = # of hash functions = 1
- Prob that a white list email hashes to a location = 10-9

Counting distinct elements

- How many unique users in a give period?
- How many users (IP addresses) visited a webpage?
 - Each IP address is 4 bytes = 32 bits
 - □ 4 billion IP addresses are possible = 16 GB
 - If we need this for each webpage and there are thousands, then we cannot store in memory

Flajolet-Martin Algorithm

- For each element obtain a sufficiently long hash
 - □ Has to be more possible results of hash than elements in the universal set
 - Example, use 64 bits $(2^{64} \sim 10^{19})$ to hash URLs (4 Billion)
 - High prob that different elements get different hash values
 - Some fraction of these hash values will be "unusual"
- We will focus on the ones that have r 0s at the end of its hash value
 Prob of hash value to end in r 0s is 2-r
 - Prob that m unique items have has values that don't end in r Os is $(1-2^{-r})^m = e^{-m2-r}$

Summary

- Look at the probability = e^{-m2^-}
- ▶ If m is much larger than 2^r, then prob approaches 1
- ▶ If m is much smaller than 2^r, then prob approaches 0
- ▶ Thus 2^R is a good choice, where R is the largest tail of 0s

Moments

- ▶ i-th Momemt
- Zeroth Moment
- First Moment
- Average = ?
- Variance = ?

$$\frac{1}{m}\sum_{s=1}^{m} \left(f_s - \frac{n}{m}\right)^2 = \frac{1}{m}\sum_{s=1}^{m} \left(f_s^2 - 2\frac{n}{m}f_s + \left(\frac{n}{m}\right)^2\right) = \left(\frac{1}{m}\sum_{s=1}^{m}f_s^2\right) - \frac{n^2}{m^2}$$