
Introduction to  
Data Science
GIRI NARASIMHAN, SCIS, FIU

Giri Narasimhan

Jaccard Similarity

! Defined on 2 sets, S and T
❑ SIM(S,T) =

! E.g., Documents and Web pages
can be thought of as set of words

! Bag Similarity uses bags instead
of sets

6/26/18

!2

Giri Narasimhan

Small Signatures and MinHash

! Permute the rows
! Minhash(Si) = row number of the first 1 in column Si

! Minhash of the 4 columns are:
❑ (a, c, b, a)

! Pr{Minhash(Si) = Minhash(Sj)} equals
❑ Jaccard similarity SIM(Si, Sj)

! MinhashSignature(Si) = result from N perm
❑ Say N = 100

6/26/18

!3

Giri Narasimhan

Computing Minhash Signatures

! Permuting a large characteristic matrix is too expensive
! Simulate permutations using hashing

❑ It is a close approximation, except for collisions
❑ Ignore collisions, which cause errors in the computation
❑ Sparsity helps in lowering the errors
❑ Instead of N permutations, we pick N hash functions

▪ h1, h2, …, hN

6/26/18

!4

Giri Narasimhan

Computing Minhash Signatures

! Given hash function h1, h2, …, hN, we want to compute MinHash values

! Let SIG(k,c) = signature matrix for k-th hash function and column c
! For row r, compute h1(r), h2(r), …, hN(r)

! If col c has 0 in row r, do nothing
! Else, for each k = 1, 2, …, N,

❑ set SIG(k,c) = min{SIG(k,c), hk(r)}

! Initialize all SIG values to infty

6/26/18

!5

Giri Narasimhan 6/26/18

!6

Pair True SIM Approx SIM
(1,2) 0 0

(1,4) 2/3 1
(3,4) 1/5 1/2

h1 h2

Giri Narasimhan

Minhash Overview

6/26/18

!7

! Takes very large documents and computes small signatures such that
❑ Jaccard Similarity is (approximately) retained

! Example: 1 M docs, N = 250 hash functions; 4 bytes per hash value
❑ 1 KB per doc signature
❑ 1 GB to store all signatures for all 1 M docs
❑ 0.5 Trillion pairs of docs
❑ Similarity computation = 1 microsec
❑ To compute all pairs = ~ 6 days (= 0.5184 trillion microsecs)

Giri Narasimhan

Find Closest Pair of Documents

! Cannot wait 6 days for an answer
! Clustering algorithms need this repeatedly
! Approach: Use a special hash function

❑ Hash items so that similar items are likely to end up in the same bucket.
❑ Avoid pairs in different buckets & reduce number of pairs to inspect

! These hash functions are called Locality Sensitive Hashing (LSH)
! Small Prob of error due to hashing

❑ False Positives (cause extra work) and False Negatives (miss good pairs)

6/26/18

!8

Giri Narasimhan

LSH for MinHash

! Divide signature matrix into b bands of r rows each
! For each band, hash column vector of r items to large # of buckets
! Use same hash function for each band but use separate buckets

❑ Use different sets of buckets for different bands

! Any pair that appears in the same bucket in any band becomes a
candidate for further inspection. All other pairs are discarded.

! If 2 columns are similar, then they must be identical in at least 1 band
! Each pair gets b chances to be in the same bucket

6/26/18

!9

Giri Narasimhan

Analysis of LSH with Banding

! Assume b bands and r rows
! Consider a pair of docs with similarity value s
! Prob that their Minhash signatures agree in any particular row = s
! We want prob that this pair of docs becomes a candidate
! Prob signatures agree in all rows of one band = sr

! Prob signature disagrees in at least one row of a band = 1 – sr

! Prob signatures disagree in at least one row in each band = (1-sr)b

! Prob that signatures agree in all rows of at least one band = 1 - (1-sr)b

6/26/18

!10

Giri Narasimhan

Behavior of 1 - (1-sr)b

88 CHAPTER 3. FINDING SIMI LAR ITEMS

0 1
 of documents
Jaccard similarity

Probability
of becoming
a candidate

Figure 3.7: The S-curve

An approximat ion to the threshold is (1/b)1/ r. For example, if b = 16 and
r = 4, then the threshold is approximately at s = 1/ 2, since the 4th root of
1/16 is 1/2.

E xample 3.11 : Let usconsider thecaseb= 20 and r = 5. That is, wesuppose
we have signatures of length 100, divided into twenty bands of five rows each.
Figure 3.8 tabulates some of the values of the funct ion 1 − (1 − s5)20. Not ice
that the threshold, the value of s at which the curve has r isen halfway, is just
slight ly more than 0.5. Also not ice that the curve is not exact ly the ideal step
funct ion that jumps from 0 to 1 at the threshold, but the slope of the curve
in the middle is significant . For example, i t rises by more than 0.6 going from
s = 0.4 to s = 0.6, so the slope in the middle is greater than 3.

s 1− (1 − sr)b
.2 .006
.3 .047
.4 .186
.5 .470
.6 .802
.7 .975
.8 .9996

Figure 3.8: Values of the S-curve for b= 20 and r = 5

For example, at s = 0.8, 1− (0.8)5 is about 0.672. If you raise this number
to the 20th power, you get about 0.00035. Subt ract ing this fract ion from 1

! Independent of b and r
❑ Curve has to get from (0,0) to (1,1)
❑ It’s always an S-curve

! Threshold = value of s at steep rise
❑ > threshold, pair is likely a candidate
❑ Set (b,r) to achieve desired threshold

6/26/18

!11

Giri Narasimhan

LSH-based Algorithm for Similar Items

! Pick k and construct k-shingles from each document
! Pick t, b, and r (t ~ (1/b)1/r)
! Pick n = br hash functions
! Apply LSH technique, find candidates, check true similarity

6/26/18

!12

Giri Narasimhan

Distance Measures

! A distance measure D must satisfy the following properties
❑ Non-negativity: D(x,y) >= 0

▪ D(x,y) = 0 if and only if x = y

❑ Symmetry: D(x,y) = D(y,x)
❑ Triangle Inequality: D(x,y) < = D(x,z) + D(z,y)

6/26/18

!13

Giri Narasimhan

Important Distance Measures

! D([x1, …, xn], [y1, …, yn]) = (|x1-y1|r + … + |xn-yn|r)1/r

! If r= 2, this is the standard Euclidean distance
! Other values are commonly referred to as Euclidean norms
! Jaccard Distance = 1 – Jaccard Similarity
! Cosine Distance = Dot Product of 2 vectors
! Edit Distance = measure of changes to turn x into y
! Hamming Distance = # of components in which 2 vectors differ

6/26/18

!14

Giri Narasimhan

Finding Identical Items

! LSH works for items with low similarity
! What if we only want to find identical items

❑ Not good just to look at say first few characters
❑ Not good to compare entire documents to check
❑ Even if we hashed, we would need too many buckets
❑ Idea: Compute hash value based on random positions

6/26/18

!15

Giri Narasimhan

Finding near-identical items

! Advanced topic – please read from text.

6/26/18

!16

Giri Narasimhan

Streaming

6/26/18

!17

Giri Narasimhan

The Stream Model

! Data arrives in a stream
! Data is arriving rapidly
! Data cannot be stored in local storage, but in archival storage
! Archival storage, if any, is too large and cannot be accessed quickly
! Archival storage cannot be searched quickly
! If stream data is not processed immediately, then it is lost
! Decisions have to be made based on the data
! Quick approximate answer is often better than slow exact answer

6/26/18

!18

Giri Narasimhan

Examples

! Wall street stock market data
! Satellite image data
! Internet and web traffic data
! Sensor data

❑ 4-byte data every 0.1 sec = 3.5 MB/day
❑ 1 million sensors in the ocean corresponds to one every 150 sq miles = 3.5 TB/day
❑ 40 MB every sec

6/26/18

!19

Modern
Times

https://youtu.be/6n9ESFJTnHs

Giri Narasimhan

Queries

! Alert when temperature is above 25 degrees
! Sliding window concept

❑ Maximum temperature for period X
❑ Alert when average for X is above 25 degrees
❑ Number of unique elements for X

6/26/18

!20

Giri Narasimhan

Standard Trick: Random Sampling

! Random Sampling: Pick a random integer from [0 .. N-1] and if 0,
process the stream data, else ignore it.
❑ Samples 1/N items

! It artificially slows down the stream to manageable levels

6/26/18

!21

Giri Narasimhan

Sampling Woes

! Stream: Tuples (user, query, time); Sampling: 1 in 10
❑ Each user has 1/10 of their queries processed

! Query: Fraction of typical user’s queries repeated over last month
! Correct Answer: Suppose user has s unique queries and d queries twice

and NO queries more than twice in the last month; Answer = d/(s+d)
! Problem: Reported fraction would be wrong

❑ In the sampled stream, s/10 are unique queries and d/100 queries appear twice
❑ The remainder of the queries that should appear twice will appear once 18d/100
❑ We will report d/(10s + 19d) [d/100 twice and s/10 + 18d/100 once

6/26/18

!22

Giri Narasimhan

Improved Solution for Sampling Woes

! Problem is that we are picking 1/10 of the queries
! We need to pick 1/10 of the users and pick all their queries
! If we can store 1/10 of the users, then for every query we can decide

either to process or not
! Improved Solution: Hash user ID (actually, IP address) to 0 … 9

❑ Pick only those that hash to 0

! Sampling Question: How to sample at rate of 1/70?
! Sampling Question: How to sample at rate of 23/70?

6/26/18

!23

Giri Narasimhan

Sampling

! Sampling can be applied if the filtering test is easy (e.g., hash value = 0?
Temperature > 22 degrees?)

! Sampling is harder if it involves a lookup (e.g., has this query been asked
before by this user? Is this user among the top 10% of the frequent users
list?)

! Other techniques are available for filtering
❑ Bloom Filters

6/26/18

!24

Giri Narasimhan

Example: Bloom Filters for Spam

! White lists: allowed email addresses
❑ Assume we have 1 Billion allowed email addresses
❑ Assume black list is much larger than white list
❑ If each email address is 20 bytes, this takes 20 GB to store

! Bloom Filters: store white lists as bit hash arrays
❑ Every email address is hashed and a 1 is stored in the location if it is in white list
❑ In 1 GB, we can store hash array of size 8 Billion

! Strict White Lists: use bloom filters and then verify with real white list
! Stricter White List: use cascade of bloom filters

6/26/18

!25

Giri Narasimhan

Bloom Filters: Test for Membership

! Array of n bits, initially all 0’s
! Collection of k hash functions. Each hash func maps a key to n buckets
! Given key K, compute K hash values and

❑ Check that each location in bit array is a 1
❑ Even if one is 0, then it fails the test

6/26/18

!26

Giri Narasimhan

False Positive Rate

! Assume we have x targets and y darts
! Prob a dart will hit a specific target = 1/x
! Prob a dart does not hit a specific target = 1 – (1/x) = (x-1)/x
! Prob that y darts miss a specific target = ((x-1)/x)y

! Prob that y darts miss a specific target = e –y/x

! Let x = 8B; y = 1B; Then prob of missing a target = e –1/8
! Prob of hitting a target = false positive rate = 1 - e –1/8 = 0.1175
! If k = 2, the prob becomes (1 - e –1/4)2 = 0.0493

6/26/18

!27

(1-h)1/h = e for
small h

Giri Narasimhan

False Positive Rate

! Let n = bit array length = 8B
! Let m = # of members = 1B
! Let k = # of hash functions = 1
! Prob that a white list email hashes to a location = 10-9

6/26/18

!28

Giri Narasimhan

Counting distinct elements

! How many unique users in a give period?
! How many users (IP addresses) visited a webpage?

❑ Each IP address is 4 bytes = 32 bits
❑ 4 billion IP addresses are possible = 16 GB
❑ If we need this for each webpage and there are thousands, then we cannot store

in memory

6/26/18

!29

Giri Narasimhan

Flajolet-Martin Algorithm

! For each element obtain a sufficiently long hash
❑ Has to be more possible results of hash than elements in the universal set
❑ Example, use 64 bits (264 ~ 1019) to hash URLs (4 Billion)
❑ High prob that different elements get different hash values
❑ Some fraction of these hash values will be “unusual”

! We will focus on the ones that have r 0s at the end of its hash value
❑ Prob of hash value to end in r 0s is 2-r
❑ Prob that m unique items have has values that don’t end in r 0s is (1-2-r)m = e-m2-r

6/26/18

!30

Giri Narasimhan

Summary

! Look at the probability =
! If m is much larger than 2r, then prob approaches 1
! If m is much smaller than 2r, then prob approaches 0
! Thus 2R is a good choice, where R is the largest tail of 0s

6/26/18

!31

Giri Narasimhan

Moments

! i-th Momemt
! Zeroth Moment
! First Moment
! Average = ?
! Variance = ?

6/26/18

!32

