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Jaccard Similarity

! Defined on 2 sets, S and T 
❑ SIM(S,T) =  

! E.g., Documents and Web pages 
can be thought of as set of words 

! Bag Similarity uses bags instead 
of sets
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Small Signatures and MinHash

! Permute the rows 
! Minhash(Si) = row number of the first 1 in column Si 

! Minhash of the 4 columns are: 
❑ (a, c, b, a) 

! Pr{Minhash(Si) = Minhash(Sj)} equals 
❑ Jaccard similarity SIM(Si, Sj) 

! MinhashSignature(Si) = result from N perm 
❑ Say N = 100
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Computing Minhash Signatures

! Permuting a large characteristic matrix is too expensive 
! Simulate permutations using hashing  

❑ It is a close approximation, except for collisions 
❑ Ignore collisions, which cause errors in the computation 
❑ Sparsity helps in lowering the errors 
❑ Instead of N permutations, we pick N hash functions 

▪ h1, h2, …, hN
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Computing Minhash Signatures

! Given hash function h1, h2, …, hN, we want to compute MinHash values 

! Let SIG(k,c) = signature matrix for k-th hash function and column c 
! For row r, compute h1(r), h2(r), …, hN(r) 

! If col c has 0 in row r, do nothing 
! Else, for each k = 1, 2, …, N,  

❑ set SIG(k,c) = min{SIG(k,c), hk(r)} 

! Initialize all SIG values to infty
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Pair True SIM Approx SIM
(1,2) 0 0

(1,4) 2/3 1
(3,4) 1/5 1/2

h1 h2
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Minhash Overview
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! Takes very large documents and computes small signatures such that 
❑ Jaccard Similarity is (approximately) retained 

! Example: 1 M docs, N = 250 hash functions; 4 bytes per hash value 
❑ 1 KB per doc signature 
❑ 1 GB to store all signatures for all 1 M docs 
❑ 0.5 Trillion pairs of docs 
❑ Similarity computation = 1 microsec 
❑ To compute all pairs = ~ 6 days (= 0.5184 trillion microsecs)
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Find Closest Pair of Documents

! Cannot wait 6 days for an answer 
! Clustering algorithms need this repeatedly 
! Approach: Use a special hash function 

❑ Hash items so that similar items are likely to end up in the same bucket. 
❑ Avoid pairs in different buckets & reduce number of pairs to inspect 

! These hash functions are called Locality Sensitive Hashing (LSH) 
! Small Prob of error due to hashing  

❑ False Positives (cause extra work) and False Negatives (miss good pairs)
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LSH for MinHash

! Divide signature matrix into b bands of r rows each 
! For each band, hash column vector of r items to large # of buckets 
! Use same hash function for each band but use separate buckets 

❑ Use different sets of buckets for different bands 

! Any pair that appears in the same bucket in any band becomes a 
candidate for further inspection. All other pairs are discarded. 

! If 2 columns are similar, then they must be identical in at least 1 band 
! Each pair gets b chances to be in the same bucket
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Analysis of LSH with Banding

! Assume b bands and r rows 
! Consider a pair of docs with similarity value s 
! Prob that their Minhash signatures agree in any particular row = s 
! We want prob that this pair of docs becomes a candidate 
! Prob signatures agree in all rows of one band = sr 

! Prob signature disagrees in at least one row of a band = 1 – sr 

! Prob signatures disagree in at least one row in each band = (1-sr)b 

! Prob that signatures agree in all rows of at least one band = 1 - (1-sr)b
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Behavior of 1 - (1-sr)b

88 CHAPTER 3. FINDING SIMI LAR ITEMS

0 1
 of documents
Jaccard similarity

Probability
of becoming
a candidate

Figure 3.7: The S-curve

An approximat ion to the threshold is (1/b)1/ r. For example, if b = 16 and
r = 4, then the threshold is approximately at s = 1/ 2, since the 4th root of
1/16 is 1/2.

E xample 3.11 : Let usconsider thecaseb= 20 and r = 5. That is, wesuppose
we have signatures of length 100, divided into twenty bands of five rows each.
Figure 3.8 tabulates some of the values of the funct ion 1 − (1 − s5)20. Not ice
that the threshold, the value of s at which the curve has r isen halfway, is just
slight ly more than 0.5. Also not ice that the curve is not exact ly the ideal step
funct ion that jumps from 0 to 1 at the threshold, but the slope of the curve
in the middle is significant . For example, i t rises by more than 0.6 going from
s = 0.4 to s = 0.6, so the slope in the middle is greater than 3.

s 1− (1 − sr )b
.2 .006
.3 .047
.4 .186
.5 .470
.6 .802
.7 .975
.8 .9996

Figure 3.8: Values of the S-curve for b= 20 and r = 5

For example, at s = 0.8, 1− (0.8)5 is about 0.672. If you raise this number
to the 20th power, you get about 0.00035. Subt ract ing this fract ion from 1

! Independent of b and r  
❑ Curve has to get from (0,0) to (1,1)  
❑ It’s always an S-curve 

! Threshold = value of s at steep rise 
❑ > threshold, pair is likely a candidate 
❑ Set (b,r) to achieve desired threshold
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LSH-based Algorithm for Similar Items

! Pick k and construct k-shingles from each document 
! Pick t, b, and r (t ~ (1/b)1/r) 
! Pick n = br hash functions  
! Apply LSH technique, find candidates, check true similarity
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Distance Measures

! A distance measure D must satisfy the following properties 
❑ Non-negativity: D(x,y) >= 0 

▪ D(x,y) = 0 if and only if x = y 

❑ Symmetry: D(x,y) = D(y,x) 
❑ Triangle Inequality: D(x,y) < = D(x,z) + D(z,y)
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Important Distance Measures

! D([x1, …, xn], [y1, …, yn]) = (|x1-y1|r + … + |xn-yn|r)1/r 

! If r= 2, this is the standard Euclidean distance 
! Other values are commonly referred to as Euclidean norms 
! Jaccard Distance = 1 – Jaccard Similarity 
! Cosine Distance = Dot Product of 2 vectors 
! Edit Distance = measure of changes to turn x into y 
! Hamming Distance = # of components in which 2 vectors differ
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Finding Identical Items

! LSH works for items with low similarity 
! What if we only want to find identical items 

❑ Not good just to look at say first few characters  
❑ Not good to compare entire documents to check 
❑ Even if we hashed, we would need too many buckets 
❑ Idea: Compute hash value based on random positions
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Finding near-identical items

! Advanced topic – please read from text. 
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Streaming
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The Stream Model

! Data arrives in a stream 
! Data is arriving rapidly 
! Data cannot be stored in local storage, but in archival storage 
! Archival storage, if any, is too large and cannot be accessed quickly 
! Archival storage cannot be searched quickly 
! If stream data is not processed immediately, then it is lost 
! Decisions have to be made based on the data 
! Quick approximate answer is often better than slow exact answer
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Examples

! Wall street stock market data 
! Satellite image data 
! Internet and web traffic data 
! Sensor data 

❑ 4-byte data every 0.1 sec = 3.5 MB/day 
❑ 1 million sensors in the ocean corresponds to one every 150 sq miles = 3.5 TB/day 
❑ 40 MB every sec
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Modern 
Times

https://youtu.be/6n9ESFJTnHs
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Queries

! Alert when temperature is above 25 degrees 
! Sliding window concept 

❑ Maximum temperature for period X 
❑ Alert when average for X is above 25 degrees 
❑ Number of unique elements for X
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Standard Trick: Random Sampling

! Random Sampling: Pick a random integer from [0 .. N-1] and if 0, 
process the stream data, else ignore it.  
❑ Samples 1/N items 

! It artificially slows down the stream to manageable levels
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Sampling Woes

! Stream: Tuples (user, query, time); Sampling: 1 in 10 
❑ Each user has 1/10 of their queries processed 

! Query: Fraction of typical user’s queries repeated over last month 
! Correct Answer: Suppose user has s unique queries and d queries twice 

and NO queries more than twice in the last month; Answer = d/(s+d) 
! Problem: Reported fraction would be wrong 

❑ In the sampled stream, s/10 are unique queries and d/100 queries appear twice 
❑ The remainder of the queries that should appear twice will appear once 18d/100 
❑ We will report d/(10s + 19d) [d/100 twice and s/10 + 18d/100 once
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Improved Solution for Sampling Woes

! Problem is that we are picking 1/10 of the queries 
! We need to pick 1/10 of the users and pick all their queries 
! If we can store 1/10 of the users, then for every query we can decide 

either to process or not 
! Improved Solution: Hash user ID (actually, IP address) to 0 … 9 

❑ Pick only those that hash to 0 

! Sampling Question: How to sample at rate of 1/70?  
! Sampling Question: How to sample at rate of 23/70? 
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Sampling

! Sampling can be applied if the filtering test is easy (e.g., hash value = 0? 
Temperature > 22 degrees?) 

! Sampling is harder if it involves a lookup (e.g., has this query been asked 
before by this user? Is this user among the top 10% of the frequent users 
list?) 

! Other techniques are available for filtering 
❑ Bloom Filters
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Example: Bloom Filters for Spam

! White lists: allowed email addresses 
❑ Assume we have 1 Billion allowed email addresses 
❑ Assume black list is much larger than white list 
❑ If each email address is 20 bytes, this takes 20 GB to store 

! Bloom Filters: store white lists as bit hash arrays 
❑ Every email address is hashed and a 1 is stored in the location if it is in white list 
❑ In 1 GB, we can store hash array of size 8 Billion  

! Strict White Lists: use bloom filters and then verify with real white list 
! Stricter White List: use cascade of bloom filters
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Bloom Filters: Test for Membership

! Array of n bits, initially all 0’s 
! Collection of k hash functions. Each hash func maps a key to n buckets 
! Given key K, compute K hash values and 

❑ Check that each location in bit array is a 1 
❑ Even if one is 0, then it fails the test
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False Positive Rate

! Assume we have x targets and y darts 
! Prob a dart will hit a specific target = 1/x 
! Prob a dart does not hit a specific target = 1 – (1/x) = (x-1)/x 
! Prob that y darts miss a specific target  = ((x-1)/x)y 

! Prob that y darts miss a specific target  = e –y/x 

! Let x = 8B; y = 1B; Then prob of missing a target = e –1/8  
! Prob of hitting a target = false positive rate = 1 - e –1/8  = 0.1175 
! If k = 2, the prob becomes (1 - e –1/4)2 = 0.0493

6/26/18

!27

(1-h)1/h = e for 
small h
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False Positive Rate

! Let n = bit array length = 8B 
! Let m = # of members = 1B 
! Let k = # of hash functions = 1 
! Prob that a white list email hashes to a location = 10-9
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Counting distinct elements

! How many unique users in a give period? 
! How many users (IP addresses) visited a webpage? 

❑ Each IP address is 4 bytes = 32 bits 
❑ 4 billion IP addresses are possible = 16 GB 
❑ If we need this for each webpage and there are thousands, then we cannot store 

in memory
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Flajolet-Martin Algorithm

! For each element obtain a sufficiently long hash 
❑ Has to be more possible results of hash than elements in the universal set 
❑ Example, use 64 bits (264 ~ 1019) to hash URLs (4 Billion) 
❑ High prob that different elements get different hash values 
❑ Some fraction of these hash values will be “unusual” 

! We will focus on the ones that have r 0s at the end of its hash value 
❑ Prob of hash value to end in r 0s is 2-r 
❑ Prob that m unique items have has values that don’t end in r 0s is (1-2-r)m = e-m2-r
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Summary

! Look at the probability =  
! If m is much larger than 2r, then  prob approaches 1 
! If m is much smaller than 2r, then prob approaches 0 
! Thus 2R is a good choice, where R is the largest tail of 0s
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Moments

! i-th Momemt 
! Zeroth Moment 
! First Moment 
! Average = ? 
! Variance = ? 
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