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Moments

! i-th Momemt 
! Zeroth Moment: Count of distinct elements in stream 
! First Moment: Count of elements in stream, i.e., Size of stream; sum of freq 
! Second Moment: Sum of squares of frequencies 
! Average = ? 
! Variance = ? 
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Sampling Woes

! Stream: Tuples (user, query, time); Sampling: 1 in 10 
❑ Each user has 1/10 of their queries processed 

! Query: Fraction of typical user’s queries repeated over last month 
! Correct Answer: Suppose user has s unique queries and d queries twice 

and NO queries more than twice in the last month; Answer = d/(s+d) 
! Problem: Reported fraction would be wrong 

❑ In the sampled stream, s/10 are unique queries and d/100 queries appear twice 
❑ The remainder of the queries that should appear twice will appear once 18d/100 
❑ We will report d/(10s + 19d) [d/100 twice and s/10 + 18d/100 once
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Improved Solution for Sampling Woes

! Problem is that we are picking 1/10 of the queries 
! We need to pick 1/10 of the users and pick all their queries 
! If we can store 1/10 of the users, then for every query we can decide 

either to process or not 
! Improved Solution: Hash user ID (actually, IP address) to 0 … 9 

❑ Pick only those that hash to 0 

! Sampling Question: How to sample at rate of 1/70?  
! Sampling Question: How to sample at rate of 23/70? 
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Sampling

! Sampling can be applied if the filtering test is easy (e.g., hash value = 0? 
Temperature > 22 degrees?) 

! Sampling is harder if it involves a lookup (e.g., has this query been asked 
before by this user? Is this user among the top 10% of the frequent users 
list?) 

! Other techniques are available for filtering 
❑ Bloom Filters
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Example: Bloom Filters for Spam

! White lists: allowed email addresses 
❑ Assume we have 1 Billion allowed email addresses 
❑ Assume black list is much larger than white list 
❑ If each email address is 20 bytes, this takes 20 GB to store 

! Bloom Filters: store white lists as bit hash arrays 
❑ Every email address is hashed and a 1 is stored in the location if it is in white list 
❑ In 1 GB, we can store hash array of size 8 Billion  

! Strict White Lists: use bloom filters and then verify with real white list 
! Stricter White List: use cascade of bloom filters

6/26/18

!7



Giri Narasimhan

Bloom Filters: Test for Membership

! Array of n bits, initially all 0’s 
! Collection of k hash functions. Each hash func maps a key to n buckets 
! Given key K, compute K hash values and 

❑ Check that each location in bit array is a 1 
❑ Even if one is 0, then it fails the test
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False Positive Rate

! Assume we have x targets and y darts 
! Prob a dart will hit a specific target = 1/x 
! Prob a dart does not hit a specific target = 1 – (1/x) = (x-1)/x 
! Prob that y darts miss a specific target  = ((x-1)/x)y 

! Prob that y darts miss a specific target  = e –y/x 

! Let x = 8B; y = 1B; Then prob of missing a target = e –1/8  
! Prob of hitting a target = false positive rate = 1 - e –1/8  = 0.1175 
! If k = 2, the prob becomes (1 - e –1/4)2 = 0.0493
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False Positive Rate

! Let n = bit array length = 8B 
! Let m = # of members = 1B 
! Let k = # of hash functions = 1 
! Prob that a white list email hashes to a location = 10-9 

! False positive rate is given by 
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Counting distinct elements

! How many unique users in a give period? 
! How many users (IP addresses) visited a webpage? 

❑ Each IP address is 4 bytes = 32 bits 
❑ 4 billion IP addresses are possible = 16 GB 
❑ If we need this for each webpage and there are thousands, then we cannot store 

in memory
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Flajolet-Martin Algorithm

! For each element obtain a sufficiently long hash 
❑ Has to be more possible results of hash than elements in the universal set 
❑ Example, use 64 bits (264 ~ 1019) to hash URLs (4 Billion) 
❑ High prob that different elements get different hash values 
❑ Some fraction of these hash values will be “unusual” 

! We will focus on the ones that have r 0s at the end of its hash value 
❑ Prob of hash value to end in r 0s is 2-r 
❑ Prob that m unique items have has values that don’t end in r 0s is (1-2-r)m = e-m2-r
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Summary

! Look at the probability =  
! If m is much larger than 2r, then  prob approaches 1 
! If m is much smaller than 2r, then prob approaches 0 
! Thus 2R is a good choice, where R is the largest tail of 0s
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Clustering
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Clustering dogs using height & weight
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Clustering dogs using height & weight
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Clustering

!Clustering is the process of making clusters, which put 
similar things together into same cluster … 

!And put dissimilar things into different clusters 
!Need a similarity function 
!Need a similarity distance function 

❑  Convenient to map items to points in space

6/26/18

!17



Giri Narasimhan

Distance Functions

! Jaccard Distance 
! Hamming Distance 
! Euclidean Distance 
! Cosine Distance 
! Edit Distance 
! …

! What is a distance function 
❑  D(x,y) >= 0 
❑  D(x,y) = D(y,x) 
❑  D(x,y) <= D(x,z) + D(z,y)
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Clustering Strategies

! Hierarchical or Agglomerative 
❑ Bottom-up 

! Partitioning methods 
❑ Top-down 

! Density-based  
! Cluster-based  
! Iterative methods
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Curse of Dimensionality

! N points in d-dimensional space 
❑  If d = 1, then average distance = 1/3 
❑  As d gets larger, what is the average distance? Distribution of distances?  

▪ # of nearby points for any a given point vanishes. So, clustering does not work well 
▪  # of points at max distance (~sqrt(d)) also vanishes. Real range actually very small 

❑  Angle ABC given 3 points approaches 90 
▪ Denominator grows linearly with d 
▪ Expected cos = 0 since equal points expected in all 4 quadrants 
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Hierarchical 
Clustering
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Hierarchical Clustering

!  Starts with each item in different clusters 
!  Bottom up 
!  In each iteration 

❑  Two clusters are identified and merged into one 
! Items are combined as the algorithm progresses 
! Questions: 

❑ How are clusters represented 
❑ How to decide which ones to merge 
❑ What is the sopping condition 

! Typical algorithm: find smallest distance between nodes of different clusters
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Hierarchical Clustering
248 CHAPTER 7. CLUSTERING
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Figure 7.5: Three more steps of the hierarchical clustering

1. Takethedistancebetween two clusters to be theminimum of thedistances
between any two points, one chosen from each cluster. For example, in
Fig. 7.3 wewould next chose to cluster the point (10,5) with the cluster of
two points, since (10,5) has distance

√
2, and no other pair of unclustered

points is that close. Note that in Example 7.2, we did make this combi-
nat ion eventually, but not unt il we had combined another pair of points.
In general, it is possible that this rule will result in an ent i rely different
clustering from that obtained using the distance-of-centroids rule.

2. Take the distance between two clusters to be the average distance of all
pairs of points, one from each cluster.

(2,2)    (3,4)    (5,2)    (4,8)    (4,10)    (6,8)    (7,10)    (11,4)    (12,3)    (10,5)    (9,3)    (12,6)

Figure 7.6: Tree showing the complete grouping of the points of Fig. 7.2
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Output of Clustering: Dendrogram

248 CHAPTER 7. CLUSTERING
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Figure 7.5: Three more steps of the hierarchical clustering

1. Takethedistancebetween two clusters to be theminimum of thedistances
between any two points, one chosen from each cluster. For example, in
Fig. 7.3 wewould next chose to cluster the point (10,5) with the cluster of
two points, since (10,5) has distance

√
2, and no other pair of unclustered

points is that close. Note that in Example 7.2, we did make this combi-
nat ion eventually, but not unt il we had combined another pair of points.
In general, it is possible that this rule will result in an ent i rely different
clustering from that obtained using the distance-of-cent roids rule.

2. Take the distance between two clusters to be the average distance of all
pairs of points, one from each cluster.

(2,2)    (3,4)    (5,2)    (4,8)    (4,10)    (6,8)    (7,10)    (11,4)    (12,3)    (10,5)    (9,3)    (12,6)

Figure 7.6: Tree showing the complete grouping of the points of Fig. 7.26/26/18
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Measures for a cluster

! Radius: largest distance from a centroid 
! Diameter: largest distance between some pair of points in cluster 
! Density: # of points per unit volume 
! Volume: some power of radius or diameter 

! Good cluster: when diameter of each cluster is much larger than its 
nearest cluster or nearest point outside cluster
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Stopping condition for clustering

! Cluster radius or diameter crosses a threshold 
! Cluster density drops below a certain threshold 
! Ratio of diameter to distance to nearest cluster drops below a certain 

threshold
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