Introduction to Data Science

GIRI NARASIMHAN, SCIS, FIU
Streams & Bloom Filters
Moments

- i-th Moment
- Zeroth Moment: Count of distinct elements in stream
- First Moment: Count of elements in stream, i.e., Size of stream; sum of freq
- Second Moment: Sum of squares of frequencies
- Average = ?
- Variance = ?

\[\frac{1}{m} \sum_{s=1}^{m} \left(f_s - \frac{n}{m} \right)^2 = \frac{1}{m} \sum_{s=1}^{m} \left(f_s^2 - 2 \frac{n}{m} f_s + \left(\frac{n}{m} \right)^2 \right) = \left(\frac{1}{m} \sum_{s=1}^{m} f_s^2 \right) - \frac{n^2}{m^2} \]
Sampling Woes

- **Stream**: Tuples (user, query, time); **Sampling**: 1 in 10
 - Each user has 1/10 of their queries processed

- **Query**: Fraction of typical user’s queries repeated over last month

- **Correct Answer**: Suppose user has s unique queries and d queries twice and NO queries more than twice in the last month; Answer = d/(s+d)

- **Problem**: Reported fraction would be wrong
 - In the sampled stream, s/10 are unique queries and d/100 queries appear twice
 - The remainder of the queries that should appear twice will appear once 18d/100
 - We will report d/(10s + 19d) [d/100 twice and s/10 + 18d/100 once]
Problem is that we are picking 1/10 of the queries
We need to pick 1/10 of the users and pick all their queries
If we can store 1/10 of the users, then for every query we can decide either to process or not

Improved Solution: Hash user ID (actually, IP address) to 0 … 9
- Pick only those that hash to 0

Sampling Question: How to sample at rate of 1/70?

Sampling Question: How to sample at rate of 23/70?
Sampling can be applied if the filtering test is easy (e.g., hash value = 0? Temperature > 22 degrees?)

Sampling is harder if it involves a lookup (e.g., has this query been asked before by this user? Is this user among the top 10% of the frequent users list?)

Other techniques are available for filtering

- Bloom Filters
Example: Bloom Filters for Spam

- **White lists**: allowed email addresses
 - Assume we have 1 Billion allowed email addresses
 - Assume black list is much larger than white list
 - If each email address is 20 bytes, this takes 20 GB to store

- **Bloom Filters**: store white lists as bit hash arrays
 - Every email address is hashed and a 1 is stored in the location if it is in white list
 - In 1 GB, we can store hash array of size 8 Billion

- Strict White Lists: use bloom filters and then verify with real white list
- Stricter White List: use cascade of bloom filters
Bloom Filters: Test for Membership

- Array of n bits, initially all 0’s
- Collection of k hash functions. Each hash func maps a key to n buckets
- Given key K, compute K hash values and
 - Check that each location in bit array is a 1
 - Even if one is 0, then it fails the test
False Positive Rate

- Assume we have x targets and y darts
- Prob a dart will hit a specific target = $1/x$
- Prob a dart does not hit a specific target = $1 - (1/x) = (x-1)/x$
- Prob that y darts miss a specific target = $((x-1)/x)^y$
- Prob that y darts miss a specific target = $e^{-y/x}$
- Let $x = 8B$; $y = 1B$; Then prob of missing a target = $e^{-1/8}$
- Prob of hitting a target = false positive rate = $1 - e^{-1/8} = 0.1175$
- If $k = 2$, the prob becomes $(1 - e^{-1/4})^2 = 0.0493$
False Positive Rate

- Let $n =$ bit array length = 8B
- Let $m =$ # of members = 1B
- Let $k =$ # of hash functions = 1
- Prob that a white list email hashes to a location = 10^{-9}
- False positive rate is given by
Counting distinct elements

- How many unique users in a give period?
- How many users (IP addresses) visited a webpage?
 - Each IP address is 4 bytes = 32 bits
 - 4 billion IP addresses are possible = 16 GB
 - If we need this for each webpage and there are thousands, then we cannot store in memory
Flajolet-Martin Algorithm

- For each element obtain a sufficiently long hash
 - Has to be more possible results of hash than elements in the universal set
 - Example, use 64 bits ($2^{64} \sim 10^{19}$) to hash URLs (4 Billion)
 - High prob that different elements get different hash values
 - Some fraction of these hash values will be “unusual”

- We will focus on the ones that have r 0s at the end of its hash value
 - Prob of hash value to end in r 0s is 2^{-r}
 - Prob that m unique items have has values that don’t end in r 0s is $(1-2^{-r})^m = e^{-m2^{-r}}$
Summary

- Look at the probability = $e^{-m2^{-r}}$
- If m is much larger than 2^r, then prob approaches 1
- If m is much smaller than 2^r, then prob approaches 0
- Thus 2^R is a good choice, where R is the largest tail of 0s
Clustering
Clustering dogs using height & weight

Figure 7.1: Heights and weights of dogs taken from three varieties
Clustering dogs using height & weight

Figure 7.1: Heights and weights of dogs taken from three varieties
Clustering is the process of making clusters, which put **similar** things together into same cluster ...

And put **dissimilar** things into different clusters

Need a similarity function

Need a similarity **distance** function

- Convenient to map items to points in space
Distance Functions

- Jaccard Distance
- Hamming Distance
- Euclidean Distance
- Cosine Distance
- Edit Distance
- ...

What is a **distance** function

- $D(x, y) \geq 0$
- $D(x, y) = D(y, x)$
- $D(x, y) \leq D(x, z) + D(z, y)$
Clustering Strategies

- Hierarchical or Agglomerative
 - Bottom-up
- Partitioning methods
 - Top-down
- Density-based
- Cluster-based
- Iterative methods
Curse of Dimensionality

- N points in d-dimensional space
 - If \(d = 1 \), then average distance = \(\frac{1}{3} \)
 - As \(d \) gets larger, what is the average distance? Distribution of distances?
 - # of nearby points for any a given point *vanishes*. So, clustering does not work well
 - # of points at max distance (~\(\sqrt{d} \)) also vanishes. Real range actually very small
 - Angle ABC given 3 points approaches 90
 - Denominator grows linearly with \(d \)
 - Expected cos = 0 since equal points expected in all 4 quadrants
Hierarchical Clustering
Hierarchical Clustering

- Starts with each item in different clusters
- Bottom up
- In each iteration
 - Two clusters are identified and merged into one
- Items are combined as the algorithm progresses

Questions:
- How are clusters represented
- How to decide which ones to merge
- What is the stopping condition

Typical algorithm: find smallest distance between nodes of different clusters
Hierarchical Clustering
Output of Clustering: Dendrogram

(2,2) (3,4) (5,2) (4,8) (4,10) (6,8) (7,10) (11,4) (12,3) (10,5) (9,3) (12,6)
Measures for a cluster

- **Radius**: largest distance from a centroid
- **Diameter**: largest distance between some pair of points in cluster
- **Density**: # of points per unit volume
- **Volume**: some power of radius or diameter

- **Good cluster**: when diameter of each cluster is much larger than its nearest cluster or nearest point outside cluster
Stopping condition for clustering

- Cluster radius or diameter crosses a threshold
- Cluster density drops below a certain threshold
- Ratio of diameter to distance to nearest cluster drops below a certain threshold