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Clustering

!Clustering is the process of making clusters, which put 
similar things together into same cluster … 

!And put dissimilar things into different clusters 
!Need a similarity function 
!Need a similarity distance function 

❑  Convenient to map items to points in space
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Distance Functions

! Jaccard Distance 
! Hamming Distance 
! Euclidean Distance 
! Cosine Distance 
! Edit Distance 
! …

! What is a distance function 
❑  D(x,y) >= 0 
❑  D(x,y) = D(y,x) 
❑  D(x,y) <= D(x,z) + D(z,y)
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Clustering Strategies

! Hierarchical or Agglomerative 
❑ Bottom-up 

! Partitioning methods 
❑ Top-down 

! Density-based  
! Cluster-based  
! Iterative methods
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Curse of Dimensionality

! N points in d-dimensional unit (hyper)sphere 
❑  If d = 1, then average distance = 1/3 
❑  As d gets larger, what is the average distance? Distribution of distances?  

▪ # of nearby points for any given point vanishes. So, clustering does not work well 
▪  # of points at max distance (~sqrt(d)) also vanishes. Real range actually very small 

❑  Angle ABC given 3 points approaches 90 
▪ Denominator grows linearly with d 
▪ Expected cos = 0 since equal points expected in all 4 quadrants 
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Clustering
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Hierarchical Clustering

!  Starts with each item in different clusters 
!  Bottom up 
!  In each iteration 

❑  Two clusters are identified and merged into one 
! Items are combined as the algorithm progresses 
! Questions: 

❑ How are clusters represented 
❑ How to decide which ones to merge 
❑ What is the sopping condition 

! Typical algorithm: find smallest distance between nodes of different clusters
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Hierarchical Clustering
248 CHAPTER 7. CLUSTERING
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Figure 7.5: Three more steps of the hierarchical clustering

1. Takethedistancebetween two clusters to be theminimum of thedistances
between any two points, one chosen from each cluster. For example, in
Fig. 7.3 wewould next chose to cluster the point (10,5) with the cluster of
two points, since (10,5) has distance

√
2, and no other pair of unclustered

points is that close. Note that in Example 7.2, we did make this combi-
nat ion eventually, but not unt il we had combined another pair of points.
In general, it is possible that this rule will result in an ent i rely different
clustering from that obtained using the distance-of-centroids rule.

2. Take the distance between two clusters to be the average distance of all
pairs of points, one from each cluster.

(2,2)    (3,4)    (5,2)    (4,8)    (4,10)    (6,8)    (7,10)    (11,4)    (12,3)    (10,5)    (9,3)    (12,6)

Figure 7.6: Tree showing the complete grouping of the points of Fig. 7.2
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Output of Clustering: Dendrogram
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Measures for a cluster

! Radius: largest distance from a centroid 
! Diameter: largest distance between some pair of points in cluster 
! Density: # of points per unit volume 
! Volume: some power of radius or diameter 
! Tightness, separation, … 
! Good cluster: when diameter of each cluster is much larger than its 

nearest cluster or nearest point outside cluster
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Stopping condition for clustering

! Cluster radius or diameter crosses a threshold 
! Cluster density drops below a certain threshold 
! Ratio of diameter to distance to nearest cluster drops below a certain 

threshold
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K-Means 
Clustering
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Start

Example from Andrew Moore’s tutorial on Clustering.
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Example from Andrew Moore’s tutorial on Clustering.
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Start

End

Example from Andrew Moore’s tutorial on Clustering.
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K-Means Clustering [McQueen ’67]

 Repeat 
❑  Start with randomly chosen cluster centers 

❑  Assign points to give greatest increase in score 

❑  Recompute cluster centers 

❑  Reassign points 

 until (no changes) 
Try the applet at: http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletH.html
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How to find K for K-means?
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Comparisons

! Hierarchical clustering 
❑ Number of clusters not preset. 
❑ Complete hierarchy of clusters 
❑ Not very robust, not very efficient. 

! K-Means 
❑ Need definition of a mean. Categorical data? 
❑ Can be sensitive to initial cluster centers; Stopping condition unclear 
❑ More efficient and often finds optimum clustering.
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Implementing 
Clustering
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Example High-Dim Application: SkyCat

!A catalog of 2 billion “sky objects” represents 
objects by their radiation in 7 dimensions 
(frequency bands). 

!Problem: cluster into similar objects, e.g., 
galaxies, nearby stars, quasars, etc. 

!Sloan Sky Survey is a newer, better version.
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Curse of Dimensionality

!Assume random points within a bounding box, e.g., 
values between 0 and 1 in each dimension. 

! In 2 dimensions: a variety of distances between 0 and 
1.41. 

! In 10,000 dimensions, the difference in any one 
dimension is distributed as a triangle.
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How to find K for K-means?

6/26/18

!26



Giri Narasimhan

BFR Algorithm

!BFR (Bradley-Fayyad-Reina) – variant of K -means for 
very large (disk-resident) data sets. 

!Assumes that clusters are normally distributed around 
a centroid in Euclidean space. 
❑  SDs in different dimensions may vary
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BFR … 2

! Points read “chunk” at a time. 
! Most points from previous chunks summarized by simple 

statistics. 
! First load handled by some sensible approach: 

1.  Take small random sample and cluster optimally. 
2. Take sample; pick random point, & k – 1 more points 

incrementally, each as far from previously points as possible.
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BFR … 3

1. Discard set : points close enough to a centroid to be 
summarized. 

2. Compression set : groups of points that are close 
together but not close to any centroid.  They are 
summarized, but not assigned to a cluster. 

3. Retained set : isolated points.
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BFR … 4
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BFR: How to summarize?

! Discard Set & Compression Set: N, SUM, SUMSQ 
! 2d + 1 values 
! Average easy to compute  

❑ SUM/N 

! SD not too hard to compute  
❑ VARIANCE = (SUMSQ/N) – (SUM/N)2
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BFR: Processing

! Maintain N, SUM, SUMSQ for clusters 
! Policies for merging compressed sets needed and for merging a point in 

a cluster 
! Last chunk handled differently 

❑  Merge all compressed sets  
❑  Merge all retained sets into nearest clusters 

! BFR suggests Mahalanobis Distance
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Mahalanobis Distance

! Normalized Euclidean distance from centroid. 
! For point (x1,…,xk) and centroid (c1,…,ck): 

1. Normalize in each dimension: yi = (xi -ci)/σi 

2. Take sum of the squares of the yi ’s. 

3. Take the square root. 
! For Gaussian clusters, ~65% of points within SD dist

6/26/18

!33



Giri Narasimhan

GRPGF 
Algorithm
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GRPGF Algorithm 

! Works for non-Euclidean distances 
! Efficient, but approximate 
! Works well for high dimensional data 

❑ Exploits orthogonality property for high dim data 

! Rules for splitting and merging clusters
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Clustering for Streams

! BDMO (authors, B. Babcock, M. Datar, R. Motwani, & L. O’Callaghan)  
! Points of stream partitioned into, and summarized by, buckets with sizes 

equal to powers of two. Size of bucket is number of points it represents.  
! Sizes of buckets obey restriction that <= two of each size. Sizes are 

required to form a sequence -- each size twice previous size, e.g., 
3,6,12,24,... .  

! Bucket sizes restrained to be nondecreasing as we go back in time. As 
in Section 4.6, we can conclude that there will be O(log N) buckets.  

! Rules for initializing, merging and splitting buckets
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