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PCA and Matrices

FROM JOHNSON & WICHERN, APPLIED
MULTIVARIATE STATISTICAL ANALYSIS, 6TH ED




PCA: Principal Component Analysis

Tool for Dimensionality Reduction

Q Reduces impact of curse of dimensionality
Tool for finding Subspace in which data lies
Summarization of data to find important variables
Compares relative importance of variables
Explains the most amount of variation in data



Principal Components

Figure 8.1 The constant density ellipse
x'Y 'x = ¢ and the principal
components y,, y, for a bivariate normal
random vector X having mean 0.




Principal Components

First sample Inear combination a;x, that maximizes
principal component = the sample variance of ax; subject
toaja; = 1
Second sample linear combination a3x; that maximizes the sample

principal component = variance of a;x; subject to a;a, = 1 and zero sample
covariance for the pairs (a)x;, a’x,)

At the ith step, we have

ith sample linear combination a;x; that maximizes the sample
principal component = variance of a;x; subject to a;a; = 1 and zero sample
covariance for all pairs (a/x;, a;x;), k < i
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https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues



Points and Vectors

Every point can be thought of @

7] I , vector from the origin to that
’ point
e =(1.32)
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Dot Product, Angles, Projections
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Matrices & Transformations

» Arrays of Values, A

» Linear Transformations
d AX =y

» Matrix Product

Q Composing tfransforms
» Matrix Inverse: AB=1— B = A"
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Data as Matrices

X1 Xp2 X1 X < 1st (multivariate) observation
X211 X222 X2 X3
X =" : P =
(nxp) - - .
BN X.p | | Xn | < nth(multivariate) observation




Eigenvalues and Eigenvectors

Under transform A, eigenvecrtors experience change in
magnitude only, but not direction

AX=AX; (A—=Al)x=0
Characteristic Eq: |A=Al| =0
Eigenvalues: A

Eigenvectors: x, €




Eigenvalues and Eigenvectors




Spectral Decomposifion

» If Ais symmetric, then the following decomposition holds true:
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Quadratic EEEs

The scalar x'Ax is called quadratic form
A Is positive definite

Q if x’Ax >0, whenever x is a nonzero vector
Equivalently, A is positive definite

Q if all its eigenvalues are positive
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If we take r eigenvectors, then

a P =[e,e,... el and

Q A can be approximated by taking r eigenvectors

R e L A "f"??'

e 5"@" ez f#}"
(k Xr) (rXr) (r X k)




Random Matrices

E(X,) E(Xy,) - E(Xy,)
E().(Zl) E()o(zz) E().(zp)

E(X) =

E(X,) E(Xn) - E(X,,).







Correlation Matrix, p

Vo, 0 0
0 Vo, - 0

0 0 = Ve,

p — (V1/2) ]2(‘}1/2) I vl/'val/?. — z



Spectral Decomp. for sq.
symm. matrices

Non-sg. asymmetric matricese (k X r)“- (r ¥ r) (r " k)

Q Use sqg. root of eigenvalues of AA’

Q Singular values of A

A = U A Y

(mxk) (m>Xm){(mxk)(kxk)



Dimensionality Reduction

Given m X kK matrix A, we can approximate it by m X s matrix B
with s <k =rank(A). Then

2 AWV,

Here we are picking s sinqulor values from SVD



