COT 5993: Introduction to Algorithms

Giri Narasimhan ECS 389; Phone: $x 3748$ giri@cs.fiu.edu

 www.cs.fiu.edu/~giri/teach/5993S05.html
Evaluation

- Exams
- Homework Assignments
- Semester Project
- Class Participation

Search

- You are asked to guess a number X that is known to be an integer lying between integers A and B. How many guesses do you need in the worst case?
- Use binary search; Number of guesses $=\log _{2}(B-A)$
- You are asked to guess a positive integer X. How many guesses do you need in the worst case?
- NOTE: No upper bound is known for the number.
- Algorithm:
- figure out B (by using Doubling Search)
- perform binary search in the range $B / 2$ through B.
- Number of guesses $=\log _{2} B+\log _{2}(B-B / 2)$
- Since X is between $B / 2$ and B. So $\log _{2}(B / 2)<\log _{2} X$, we have
- Number of guesses < $2 \log _{2} X-1$

Polynomials

- Given a polynomial
$-p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}+a_{n} x^{n}$
compute the value of the polynomial for a given value of x.
- How many additions and multiplications are needed?
- Simple solution:
- Number of additions = n
- Number of multiplications $=1+2+\ldots+n=n(n+1) / 2$
- Improved solution using Horner's rule:
- $\left.p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+\ldots x\left(a_{n-1}+x a_{n}\right)\right) \ldots\right)\right)$
- Number of additions $=n$
- Number of multiplications $=n$

Celebrity Problem

- A Celebrity is one that knows nobody and that everybody knows.

Celebrity Problem:

INPUT: n persons with a n×n information matrix.
OUTPUT: Find the "celebrity", if one exists.
MODEL: Only allowable questions are:

- Does person i know person j?
- Naive Algorithm: O(n²) Questions.
- Using Divide-and-Conquer: O(n $\log _{2} n$) Questions.
- Improved solution?

Celebrity Problem (Cont'd)

- Induction Hypothesis 2: We know how to find n-2 noncelebrities among a set of n-1 people, i.e., we know how to find at most one person among a set of $n-1$ people that could potentially be a celebrity.
- Resulting algorithm needs [3(n-1)-1] questions.

