Greedy Algorithms

Given a set of activities $\left(s_{i}, f_{i}\right)$, we want to schedule the maximum number of non-overlapping activities.
GREEDY-ACTIVITY-SELECTOR (s, f)

1. $n=$ length $[s]$
2. $S=\left\{a_{1}\right\}$
3. $i=1$
4. for $m=2$ to n do
5.
6. if s_{m} is not before f_{i} then
7.

$$
S=S \cup\left\{a_{m}\right\}
$$

8. return S

Example

- [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], $[2,13],[12,14]$-- Sorted by finish times [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], [8,12], [2,13], [12,14]
$[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11]$, [8,12], [2,13], [12,14]
$[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11]$, [8,12], [2,13], [12,14]
$[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11]$, [8,12], [2,13], [12,14]
$[1,4],[3,5],[0,6],[5,7],[3,8],[5,9],[6,10],[8,11]$, [8,12], [2,13], [12,14]

Why does it work?

THEOREM

Let A be a set of activities and let a_{1} be the activity with the earliest finish time. Then activity a_{1} is in some maximum-sized subset of nonoverlapping activities.

- PROOF

Let S^{\prime} be a solution that does not contain a_{1}. Let a_{1}^{\prime} be the activity with the earliest finish time in S^{\prime}. Then replacing a_{1}^{\prime} by a_{1} gives a solution S of the same size.
Why are we allowed to replace? Why is it of the same size?

Greedy Algorithms - Huffman Coding

- Huffman Coding Problem

Example: Release 29.1 of 15-Feb-2005 of TrEMBL Protein Database contains $1,614,107$ sequence entries, comprising $505,947,503$ amino acids. There are 20 possible amino acids. What is the minimum number of bits to store the compressed database?

~2.5 G bits or 300MB.

- How to improve this?
- Information: Frequencies are not the same.

Ala (A) 7.72 Gln (Q) 3.91 Leu (L) 9.56 Ser (S) 6.98 Arg (R) 5.24 Glu (E) 6.54 Lys (K) 5.96 $\operatorname{Thr}(\mathrm{T}) 5.52$ Asn (N) 4.28 Gly (G) 6.90 Met (M) 2.36 Trp (W) 1.18 Asp (D) 5.28 His (H) 2.26 Phe (F) 4.06 $\operatorname{Tyr}(\mathrm{Y}) 3.13$ Cys (C) 1.60 Ile (I) $5.88 \mathrm{Pro} \mathrm{(P)} 4.87 \mathrm{Val}(\mathrm{V}) 6.66$

Huffman Coding

2 million characters in file.
A, C, G, T, N, Y, R, S, M

IDEA 1: Use ASCII Code Each need at least 8 bits, Total $=16 \mathrm{M}$ bits $=2 \mathrm{MB}$

IDEA 2: Use 4-bit Codes Each need at least 4 bits, Total $=8 \mathrm{M}$ bits $=1 \mathrm{MB}$

Percentage Frequencies

IDEA 3: Use Variable Length Codes
A 2211
T 2210
C 18011
G 18010
N 10001
Y 500011
R 400010
S 400001
M 300000

How to Decode?
Need Unique decoding! Easy for Ideas 1 \& 2.
What about Idea 3?

110101101110010001100000000110
110101101110010001100000000110

2 million characters in file.
Length = ?
Expected length $=$?
Sum up products of frequency times the code length, i.e.,
$(.22 \times 2+.22 \times 2+.18 \times 3+.18 \times 3+.10 \times 3+.05 \times 5+.04 \times 5+.04 \times 5+.03 \times 5) \times 2 \mathrm{M}$ bits $=$ 3.24 M bits $=.4 \mathrm{MB}$

Huffman Coding

- Idea: Use shorter codes for more frequent amino acids and longer codes for less frequent ones.

Greedy Algorithms - Other examples

- Minimum Spanning Trees (Kruskal's \& Prim's)
- Matroid Problems
- Several scheduling problems

Dynamic Programming

- Activity Problem Revisited: Given a set of activities $\left(s_{i}, f_{i}\right)$, we want to schedule the maximum number of non-overlapping activities.
- New Approach:
$A_{i}=$ Best solution for intervals $\left\{a_{1}, \ldots, a_{i}\right\}$ that includes interval a_{i}
$B_{i}=$ Best solution for intervals $\left\{a_{1}, \ldots, a_{i}\right\}$ that does not include interval a_{i}
- Does it solve the problem to compute A_{i} and B_{i} ? - How to compute A_{i} and B_{i} ?

