Number-Theoretic Algorithms

- What are the factors of 326,818,261,539,809,441,763,169?
- There is no known efficient algorithm.
- What is the greatest common divisor of 835,751,544,820 and 391,047,152,188?
- Euclid's algorithm solves this efficiently.
- These two facts are the basis for the RSA public-key cryptosystem.

Basic Number Theory

- Divisibility
 - 3 | 12 "3 divides 12", "12 is a multiple of 3"
- Factors
 - Factors (non-trivial divisors) of 20 are 2,4,5,10
- Primes
 - 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...
 - 1 is not prime
 - There are infinitely many primes.

Unique Factorization

- Divisibility by a prime
 - If p is prime and $p \mid ab$, then $p \mid a \text{ or } p \mid b$.
- Unique factorization
 - Every integer has a unique factorization as a product of primes.
 - 5280 = 2⁵ 3¹ 5¹ 11¹

Division Theorem

- For any integer a and any positive integer n, there are unique integers q and r, such that $0 \le r < n$ and a = qn+r.
- Quotient q and remainder r
- Notation: r = a mod n

Greatest Common Divisors

- Any two integers, not both 0, have a greatest common divisor (gcd).
- gcd(24,30)=6
- a, b are relatively prime if gcd(a,b)=1.

Euclid's Algorithm

 For any nonnegative integer a and any positive integer b, gcd(a,b) = gcd (b, a mod b)
 Euclid's algorithm (ca. 300 B.C.) EUCLID(a,b)

```
if (b = 0) then return a
else return EUCLID(b, a mod b)
}
```

Example

- EUCLID(120, 23)
- = EUCLID(23, 5)
- = EUCLID(5, 3)
- = EUCLID(3, 2)
- = EUCLID(2, 1)
- = EUCLID(1, 0)
- = 1

So 120 and 23 are relatively prime.

Extended Euclid's Algorithm

- Theorem 31.2: gcd(a,b) is the smallest positive integer in the set {ax+by : x,y ∈ Z}
- Euclid's Algorithm can calculate x and y such that ax+by = gcd(a,b).

Example

- \cdot 120 / 23 = 5 r 5 -505 = 120 - 5.23 $\cdot 23 / 5 = 4 r 3$ - So 3 = 23-4.5 = 23-4.(120-5.23) = -4.120+21.23 $\cdot 5/3 = 1r2$ - So 2 = 5-1.3 = (120-5.23)-1.(-4.120+21.23) = 5.120 - 26.23 $\cdot 3/2 = 1r1$ - So 1 = 3-1.2 = (-4.120+21.23)-1.(5.120-26.23)
 - = -9.120+47.23

Modular Arithmetic

- We do all arithmetic modulo n.
- Powers of 3
 - 1,3,9,27,81,243,...
- Powers of 3 modulo 7
 1,3,2,6,4,5,1,3,2,6,4,5,...
- Fermat's Theorem:
 - If p is prime and $1 \le a < p$, then $a^{p-1} = 1 \pmod{p}$.

Multiplicative Inverses

- If a is relatively prime to n, then there exists x such that ax = 1 (mod n).
- x is the multiplicative inverse of a (mod n).
- We can find x using the Extended Euclid's Algorithm.
 - ax+ny=1 implies that ax = 1 (mod n)
- Example
 - The multiplicative inverse of 23 (mod 120) is 47, since 1 = -9.120 + 47.23.

Public Key Cryptography

- Goal: Allow users to communicate securely even if they don't share a secret key.
- Each user publishes a public key and also keeps a private key secret.
- Anyone can encrypt a message using Alice's public key, but only she can decrypt it, using her private key.
- Also, Alice can "sign" a message by encrypting it with her private key.

The RSA Cryptosystem

- Randomly choose two large primes p and q.
 p = 835,751,544,821 q = 391,047,152,189
 - (Really p and q should be about 150 digits long.)
- Let n = pq.
 - n = 326,818,261,539,809,441,763,169
- Idea: Factoring n is hard!
- Compute $\varphi(n) = (p-1)(q-1)$.
 - $-\varphi(n) = 326,818,261,538,582,643,066,160$
 - ($\phi(n)$ gives the number of integers less than n that are relatively prime to n.)

RSA Cryptosystem, continued

- Choose e relatively prime to $\varphi(n)$.
 - e = 3
- Use Extended Euclid's Algorithm to compute d, the multiplicative inverse of e (mod φ(n)).
 d = 217,878,841,025,721,762,044,107
- (e,n) is the RSA public key.
- (d,n) is the RSA private key.
- Encryption: $E(M) = M^e \mod n$.
- Decryption: $D(C) = C^d \mod n$.

Fast Exponentiation

- Since d is huge, C^d mod n cannot be computed naïvely.
- We can do it in 2log d multiplications:
- fun exp(C, d, n) =

 if d = 0 then 1
 else if even(d) then
 exp(C*C mod n, d/2, n)
 else C*exp(C, d-1, n) mod n

Correctness of RSA

- Encrypting and decrypting M gives $D(E(M)) = E(D(M)) = M^{ed} \pmod{n}$.
- By the choice of e and d, we have ed = 1 + k(p-1)(q-1), for some k.
- Calculating mod p, if M ≠ 0 (mod p), then M^{ed} = M(M^{p-1})^{k(q-1)} = M(1)^{k(q-1)} = M (mod p) using Fermat's Theorem.
- And, of course, if M = 0 (mod p), then again M^{ed} = M (mod p).

Correctness of RSA, Continued

- A similar calculation shows that M^{ed} = M (mod q).
- Hence we have
 p | M^{ed} M and q | M^{ed} M
- Because gcd(p,q)=1, this implies that pq | M^{ed} - M
- So $M^{ed} = M \pmod{n}$.

Example

- n = 326,818,261,539,809,441,763,169
- e = 3
- d = 217,878,841,025,721,762,044,107
- M = 12,345,678,901,234,567,890
- Encryption: E(M) = M^e mod n
- E(M) = 268,102,434,874,902,796,719,062
- Decryption: $D(C) = C^d \mod n$
- D(E(M)) = 12,345,678,901,234,567,890

Finding Big Primes

- Prime Number Theorem: the number of primes less than or equal to n is about n/ln n.
- Hence a random 512-bit number is prime with probability about $1/\ln 2^{512} \approx 1/355$.
- So random search will work well, if we can test for primality.
- Randomized tests: For example, if aⁿ⁻¹ ≠ 1 (mod n), then n cannot be prime.
- Agrawal, Kayal and Saxena found a polynomial-time algorithm in 2002!

Factoring Big Integers

- Many very sophisticated algorithms have been developed.
- But all take exponential time.
- Today, factoring an arbitrary 300-digit integer remains infeasible (apparently).