Number-Theoretic Algorithms

- What are the factors of $326,818,261,539,809,441,763,169 ?$
There is no known efficient algorithm.
- What is the greatest common divisor of $835,751,544,820$ and $391,047,152,188$? Euclid's algorithm solves this efficiently.
- These two facts are the basis for the RSA public-key cryptosystem.

Basic Number Theory

- Divisibility

- 3 |12 "3 divides 12 ", "12 is a multiple of 3 "
- Factors
- Factors (non-trivial divisors) of 20 are 2,4,5,10
- Primes
- $2,3,5,7,11,13,17,19,23,29, \ldots$
- 1 is not prime
- There are infinitely many primes.

Unique Factorization

- Divisibility by a prime
- If p is prime and $p \mid a b$, then $p \mid a$ or $p \mid b$.
- Unique factorization
- Every integer has a unique factorization as a product of primes.
$-5280=2^{5} 3^{1} 5^{1} 11^{1}$

Division Theorem

- For any integer a and any positive integer n, there are unique integers q and r, such that $0 \leq r<n$ and $a=q n+r$.
- Quotient q and remainder r
- Notation: $r=a \bmod n$

Greatest Common Divisors

- Any two integers, not both 0 , have a greatest common divisor (gcd).
- $\operatorname{gcd}(24,30)=6$
- a, b are relatively prime if $\operatorname{gcd}(a, b)=1$.

Euclid's Algorithm

- For any nonnegative integer a and any positive integer b,
$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$
- Euclid's algorithm (ca. 300 B.C.) EUCLID(a,b) \{
if $(b=0)$ then return a else return EUCLID(b, a mod b) \}

Example

EUCLID $(120,23)$
 = EUCLID $(23,5)$
 = EUCLID(5, 3)
 = EUCLID(3, 2)
 = EUCLID(2, 1)
 = EUCLID(1, 0)
 $=1$

So 120 and 23 are relatively prime.

Extended Euclid's Algorithm

- Theorem 31.2: $\operatorname{gcd}(a, b)$ is the smallest positive integer in the set $\{a x+b y: x, y \in \mathbb{Z}\}$
- Euclid's Algorithm can calculate x and y such that $a x+b y=\operatorname{gcd}(a, b)$.

Example

- $120 / 23=5$ r 5

$$
- \text { So } 5=120-5 \cdot 23
$$

- $23 / 5=4$ r 3
- So $3=23-4 \cdot 5=23-4 \cdot(120-5 \cdot 23)=-4 \cdot 120+21 \cdot 23$
$5 / 3=1 r 2$
- So $2=5-1 \cdot 3=(120-5 \cdot 23)-1 \cdot(-4 \cdot 120+21 \cdot 23)$

$$
=5 \cdot 120-26 \cdot 23
$$

$$
\begin{aligned}
& 3 / 2=1 r 1 \\
&- \text { So } 1=3-1 \cdot 2=(-4 \cdot 120+21 \cdot 23)-1 \cdot(5 \cdot 120-26 \cdot 23) \\
&=-9 \cdot 120+47 \cdot 23
\end{aligned}
$$

Modular Arithmetic

- We do all arithmetic modulo n.
- Powers of 3
- 1,3,9,27,81,243,...
- Powers of 3 modulo 7
- 1,3,2,6,4,5,1,3,2,6,4,5,...
- Fermat's Theorem:
- If p is prime and $1 \leq a<p$, then $a^{p-1}=1(\bmod p)$.

Multiplicative Inverses

- If a is relatively prime to n, then there exists x such that $a x=1(\bmod n)$.
- x is the multiplicative inverse of $a(\bmod n)$.
- We can find x using the Extended Euclid's Algorithm.
- $a x+n y=1$ implies that $a x=1(\bmod n)$
- Example
- The multiplicative inverse of $23(\bmod 120)$ is 47 , since $1=-9 \cdot 120+47 \cdot 23$.

Public Key Cryptography

- Goal: Allow users to communicate securely even if they don't share a secret key.
- Each user publishes a public key and also keeps a private key secret.
- Anyone can encrypt a message using Alice's public key, but only she can decrypt it, using her private key.
- Also, Alice can "sign" a message by encrypting it with her private key.

The RSA Cryptosystem

- Randomly choose two large primes p and q.
- $p=835,751,544,821 \quad q=391,047,152,189$
- (Really p and q should be about 150 digits long.)
- Let $n=p q$.
- $n=326,818,261,539,809,441,763,169$
- Idea: Factoring n is hard!
- Compute $\varphi(n)=(p-1)(q-1)$.
$-\varphi(n)=326,818,261,538,582,643,066,160$
- $(\varphi(n)$ gives the number of integers less than n that are relatively prime to n.)

RSA Cryptosystem, continued

- Choose e relatively prime to $\varphi(n)$.
- en
- Use Extended Euclid's Algorithm to compute d, the multiplicative inverse of $e(\bmod \varphi(n))$.
- $d=217,878,841,025,721,762,044,107$
- (e, n) is the RSA public key.
- (d, n) is the RSA private key.
- Encryption: $E(M)=M^{e} \bmod n$.
- Decryption: $D(C)=C^{d} \bmod n$.

Fast Exponentiation

- Since d is huge, $C^{d} \bmod n$ cannot be computed naïvely.
- We can do it in $2 \log$ d multiplications:
- fun $\exp (C, d, n)=$
if $d=0$ then 1
else if even(d) then $\exp \left(C^{\star} C \bmod n, d / 2, n\right)$
else $C^{\star} \exp (C, d-1, n) \bmod n$

Correctness of RSA

- Encrypting and decrypting M gives

$$
D(E(M))=E(D(M))=M^{\text {ed }}(\bmod n) .
$$

- By the choice of e and d, we have ed $=1+k(p-1)(q-1)$, for some k.
- Calculating $\bmod p$, if $M \neq 0(\bmod p)$, then

$$
M^{e d}=M\left(M^{p-1}\right)^{k(q-1)}=M(1)^{k(q-1)}=M(\bmod p)
$$

using Fermat's Theorem.

- And, of course, if $M=0(\bmod p)$, then again $M^{\text {ed }}=M(\bmod p)$.

Correctness of RSA, Continued

- A similar calculation shows that $M^{\text {ed }}=M(\bmod q)$.
- Hence we have
$p \mid M^{\text {ed }}-M$ and $q \mid M^{\text {ed }}-M$
- Because $\operatorname{gcd}(p, q)=1$, this implies that $p q \mid M^{\text {ed }}-M$
- So $M^{e d}=M(\bmod n)$.

Example

- $n=326,818,261,539,809,441,763,169$
- $e=3$
- $d=217,878,841,025,721,762,044,107$
- $M=12,345,678,901,234,567,890$
- Encryption: $E(M)=M^{e} \bmod n$
- $E(M)=268,102,434,874,902,796,719,062$
- Decryption: $D(C)=C^{d} \bmod n$
- $D(E(M))=12,345,678,901,234,567,890$

Finding Big Primes

- Prime Number Theorem: the number of primes less than or equal to n is about $n / \ln n$.
- Hence a random 512-bit number is prime with probability about $1 / \ln 2^{512} \approx 1 / 355$.
- So random search will work well, if we can test for primality.
- Randomized tests: For example, if $a^{n-1} \neq 1$ $(\bmod n)$, then n cannot be prime.
- Agrawal, Kayal and Saxena found a polynomial-time algorithm in 2002!

Factoring Big Integers

- Many very sophisticated algorithms have been developed.
- But all take exponential time.
- Today, factoring an arbitrary 300-digit integer remains infeasible (apparently).

