Polynomial-time computations

- An algorithm has time complexity $O(T(n))$ if it runs in time at most $c T(n)$ for every input of length n.
- An algorithm is a polynomial-time algorithm if its time complexity is $O(p(n))$, where $p(n)$ is polynomial in n .

Polynomials

- If $f(n)=$ polynomial function in n, then $f(n)=O\left(n^{c}\right)$, for some fixed constant c
- If $f(n)=$ exponential (super-polynomial) function in n,
then $f(n)=\omega\left(n^{c}\right)$, for any constant c
- Composition of polynomial functions are also polynomial, i.e.,
$f(g(n))=$ polynomial if $f()$ and $g()$ are polynomial
- If an algorithm calls another polynomial-time subroutine a polynomial number of times, then the time complexity is polynomial.

The class P

- A problem is in P if there exists a polynomial-time algorithm that solves the problem.
- Examples of P
- DFS: Linear-time algorithm exists
- Sorting: O(n log n)-time algorithm exists
- Bubble Sort: Quadratic-time algorithm $O\left(n^{2}\right)$
- APSP: Cubic-time algorithm $O\left(n^{3}\right)$
- P is therefore a class of problems (not algorithms)!

The class NP

- A problem is in NP if there exists a nondeterministic polynomial-time algorithm that solves the problem.
- A problem is in VP if there exists a (deterministic) polynomial-time algorithm that verifies a solution to the problem.
- All problems in P are in VP

TSP: Traveling Salesperson Problem

- Input:
- Weighted graph, G
- Length bound, B
- Output:
- Is there a traveling salesperson tour in G of length at most B ?
- Is TSP in NP?
- YES. Easy to verify a given solution.
- Is TSP in P?
- OPEN!
- One of the greatest unsolved problems of this century!
- Same as asking: Is $P=$ VP?

So, what is VPP-Complete?

- VP-Complete problems are the "hardest" problems in VP.
- We need to formalize the notion of "hardest".

Terminology (Cont'd)

- Decision Problems:
- Are problems for which the solution set is \{yes, no\}
- Example: Does a given graph have an odd cycle?
- Example: Does a given weighted graph have a TSP tour of length at most B ?
- Complement of a decision problem:
- Are problems for which the solution is "complemented".
- Example: Does a given graph NOT have an odd cycle?
- Example: Is every TSP tour of a given weighted graph of length greater than B?
- Optimization Problems:
- Are problems where one is maximizing (or minimizing) some objective function.
- Example: Given a weighted graph, find a MST.
- Example: Given a weighted graph, find an optimal TSP tour.
- Verification Algorithms:
- Given a problem instance i and a certificate s, is s a solution for instance i?

Terminology (Cont'd)

- Complexity Class P:
- Set of all problems p for which polynomial-time algorithms exist.
- Complexity Class VP :
- Set of all problems p for which polynomial-time verification algorithms exist.
- Complexity Class ca-VP:
- Set of all problems p for which polynomial-time verification algorithms exist for their complements, I.e., their complements are in vp.

Terminology (Cont'd)

- Reductions: $\mathrm{p}_{1} \rightarrow \mathrm{p}_{2}$
- A problem p_{1} is reducible to p_{2}, if there exists an algorithm R that takes an instance i_{1} of p_{1} and outputs an instance i_{2} of p_{2}, with the constraint that the solution for i_{1} is YES if and only if the solution for i_{2} is YES.
- Thus, R converts YES (NO) instances of p_{1} to YES (NO) instances of p_{2}.
- Polynomial-time reductions: $\mathrm{p}_{1} \xrightarrow{p} \mathrm{p}_{2}$
- Reductions that run in polynomial time.
- If $p_{1} \xrightarrow{p} p_{2}$, then
-If p_{2} is easy, then so is p_{1}.

$$
\begin{aligned}
& \mathrm{p}_{2} \in \mathcal{P} \Rightarrow \mathrm{p}_{1} \in \mathcal{P} \\
& \mathrm{p}_{1} \notin \mathcal{P} \Rightarrow \mathrm{p}_{2} \notin \mathcal{P}
\end{aligned}
$$

-If p_{1} is hard, then so is p_{2}.

The problem classes and their relationships

