How to write algorithmic solutions: An ideal algorithmic solutions must show Basic Idea, Algorithm, and Time and Space Complexity Analysis.

Reminder: Add a signed statement that you have adhered to the collaboration policy for this class and that what you are presenting is your own work.

Problems

35. (Regular) Given below is an algorithm for checking whether a given connected, $G(V, E)$ undirected graph has an odd length cycle. The algorithm is a simple modification of DFS and it is called as ODDCYCLE-VISIT($G, 1, +1$).

ODDCYCLE-VISIT(G, u, b)
Comment: DFS in graph G from vertex u
1. $color[u] \leftarrow \text{gray}$
2. $label[u] \leftarrow b$
3. for each vertex $v \in Adj[u]$ do
4. if $color[v] = \text{white}$ then
5. $\pi[v] \leftarrow u$
6. ODDCYCLE-VISIT($G, v, -b$)
7. else if $label[u] = label[v]$ then
8. Print ”Odd Cycle Exists”; Stop
9. $color[u] \leftarrow \text{BLACK}$

(a) Analyze the time complexity of the above algorithm.

(b) Prove the following claims, which together prove the correctness of the above algorithm:

Claim 1: Prove that every node in the graph is labeled by the algorithm with labels $+1$ or -1.

Claim 2: If the graph has an odd cycle, then regardless of what algorithm is used for labeling the nodes (with labels $+1$ and -1), there must exist two adjacent vertices with the same label.

Claim 3: If $e = (u, v)$ is a tree edge of the DFS tree, then the algorithm makes sure that $label[u] \neq label[v]$.

Claim 4: If the above algorithm encounters an edge $e = (u, v)$ with $label[u] = label[v]$, then e is a back edge of the DFS tree, and this edge along with the unique path in the tree from u to v forms an odd cycle.

Claim 5: If there exists an edge $e = (u, v)$ with $label[u] = label[v]$, then the algorithm will find it.
Claim 6: If there exists an odd cycle in the graph, then the algorithm will find it.

Convince yourself that proving the above claims is enough to prove correctness of the algorithm.

36. (Exercise) Write down the incidence matrix, B, for the graph in Figure 22.1 (p528). The definition of incidence matrix is given in problem 22.1-7 (p531).

37. (Regular) Solve problem 22.3-1 only for the undirected case.

38. (Regular) Given a weighted undirected graph G with non-negative edge weights, if the edge weights are all increased by a positive additive constant, can the minimum spanning tree change? Can the output of Dijkstra’s algorithm change for some (fixed) start vertex s? What if they are decreased by a positive constant? What if the edge weights are all multiplied by a positive constant? Give (very) simple examples, if you claim that they can change.

39. (Extra Credit) Problem 23.2-7, page 574.

40. (Extra Credit) Problem 23-3, page 577.

41. (Regular) Modify Floyd-Warshall’s algorithm to output the number of distinct paths between every pair of vertices in an unweighted undirected graph.

42. (Exercise) Verify that the above algorithm is correct by computing the number of distinct paths between every pair of vertices for the undirected graph G described as follows. The graph G has 7 vertices numbered 0 through 6. Vertex 0 is connected to 1 and 2. Vertex 3 is connected to 1, 2, 4, and 5. Vertex 6 is connected to 4 and 5. No other edges exist in G.