
SPRING 2005: COT 5993 Intro. to Algorithms

[Homework 4; Due Apr 19 at start of class]

How to write algorithmic solutions: An ideal algorithmic solutions must show Basic
Idea, Algorithm, and Time and Space Complexity Analysis.

Reminder: Add a signed statement that you have adhered to the collabo-

ration policy for this class and that what you are presenting is your own

work.

Problems

35. (Regular) Given below is an algorithm for checking whether a given connected,
G(V,E) undirected graph has an odd length cycle. The algorithm is a simple modifi-
cation of DFS and it is called as ODDCycle-Visit(G, 1,+1).

ODDCycle-Visit(G, u, b)
Comment: DFS in graph G from vertex u
1 color[u]← gray
2 label[u]← b
3 for each vertex v ∈ Adj[u] do
4 if color[v] = white then
5 π[v]← u
6 ODDCycle-Visit(G, v, −b)
7 else if label[u] = label[v] then
8 Print ”Odd Cycle Exists”; Stop
9 color[u]← black

(a) Analyze the time complexity of the above algorithm.

(b) Prove the following claims, which together prove the correctness of the above
algorithm:

Claim 1: Prove that every node in the graph is labeled by the algorithm with
labels +1 or -1.

Claim 2: If the graph has an odd cycle, then regardless of what algorithm is
used for labeling the nodes (with labels +1 and -1), there must exist two
adjacent vertices with the same label.

Claim 3: If e = (u, v) is a tree edge of the DFS tree, then the algorithm makes
sure that label[u] 6= label[v].

Claim 4: If the above algorithm encounters an edge e = (u, v) with label[u] =
label[v], then e is a back edge of the DFS tree, and this edge along with the
unique path in the tree from u to v forms an odd cycle.

Claim 5: If there exists an edge e = (u, v) with label[u] = label[v], then the
algorithm will find it.



Claim 6: If there exists an odd cycle in the graph, then the algorithm will find
it.

Convince yourself that proving the above claims is enough to prove correctness of
the algorithm.

36. (Exercise) Write down the incidence matrix, B, for the graph in Figure 22.1 (p528).
The definition of incidence matrix is given in problem 22.1-7 (p531).

37. (Regular) Solve problem 22.3-1 only for the undirected case.

38. (Regular) Given a weighted undirected graph G with non-negative edge weights, if
the edge weights are all increased by a positive additive constant, can the minimum
spanning tree change? Can the output of Dijkstra’s algorithm change for some (fixed)
start vertex s? What if they are decreased by a positive constant? What if the edge
weights are all multiplied by a positive constant? Give (very) simple examples, if you
claim that they can change.

39. (Extra Credit) Problem 23.2-7, page 574.

40. (Extra Credit) Problem 23-3, page 577.

41. (Regular) Modify Floyd-Warshall’s algorithm to output the number of distinct paths
between every pair of vertices in an unweighted undirected graph.

42. (Exercise) Verify that the above algorithm is correct by computing the number of
distinct paths between every pair of vertices for the undirected graph G described as
follows. The graph G has 7 vertices numbered 0 through 6. Vertex 0 is connected to
1 and 2. Vertex 3 is connected to 1, 2, 4, and 5. Vertex 6 is connected to 4 and 5. No
other edges exist in G.


