COT 6405: Analysis of

Algorithms

Giri NARASIMHAN
www.cs fiu.edu/~giri/teach/6405F19.html

http://www.cs.fiu.edu/~giri/teach/5407S19.html

Momentos

®» Slides and Audio online

=» Need to register
» Go fo hitps://fiu.momentos.life

» |f you don't already have an account

= Click on “Sign up”

= Follow instructions & use referral code: 5T6LSV

If you have an account, “Add Course” with code 5T6LSV

= Verify account using link sent fo email

CAP 5510 / CGS 5166 8/28/19

https://fiu.momentos.life/

Homework 1 is ready

» Read Submission Guidelines before starting
on homework.

Definitions

Abstract Problem: defines a function from any allowablg input to a
corresponding output

\ “/
:L y '

e
/|
| P4 ’

.‘ '~‘ J

Instance of a Problem: a specific input to abstract probiem

Algorithm: well-defined computational procedure that takes an
instance of a problem as input and produces the correct output

An Algorithm must halt on every input with correct output.

COT 5407 9/4/08

Sorting

» |nputis a sequence of n items that can be compared.

= Qutputis an ordered list of those n items
» |.e., areordering or permutation of the input items such that the items are in sorted order

Fundamental problem that has received a lot of attention over the years.

Used in many applications.

Scores of different algorithms exist.
Task: To compare algorithms

=» On what bases?

= Time

= Space

= Other

COT 5407

9/4/08

Sorting Algorithms

» Number of Comparisons
» Number of Data Movements
Additional Space Requirements

OOOOOOO

9/4/08

Sorting Algorithms

SelectionSort
InsertionSort
BubbleSort
ShakerSort
MergeSort
HeapSort
QuickSort

Bucket & Radix Sort
Counting Sort

COT 5407 9/4/08

Worst-Case Time Analysis

» Two Techniques:
1. Counts and Summations:
= Count number of steps from pseudocode and add
2. Recurrence Relations:

= Use invariant, write down recurrence relation and solve it

» We will use big-Oh notation to write down time and space
complexity (for both worst-case & average-case analyses).

» Compute worst possible time of all input instances of length N.

COT 5407 1/17/17

Definition of big-Oh

» We say that
= F(n) = O(G(n))
f there exists positive constants, ¢ and n,, such that

» Forall n 2 n, we have E(n) Sc G(n)\

To prove big-Oh relationships

» We say that
= F(n) = O(G(n))
If there exists positive constants, ¢ and n,, such that

» For all n 2 n,, we have ﬂ(_n) < c G(n) \

= To show that F(n) = O(G(n)), you need to find two

positive constants that satisfy the condition mentioned
above

COT 5407 1/17/17

Definition of big-Oh

» We say that
= F(n) = O(G(n))

If there exists two positive constants, ¢ and n,, such that
» Forallnz2n, we have I{n) <c Gini \

» We say that
= F(n) # O(G(n))

If for any positive constant, g.-such-the
» There exists n 2 n,, we have F

COT 5407

To disprove big-Oh relationships

» We say that
= F(n) # O(G(n))
If for any positive constant, ¢, such that
» There exists n 2 n,, we have F(]n) > ¢ G(n) ‘

= To show that F(n) # O(G(n)),

» need to show that for any positive value of ¢, there does not
exist a positive constant nythat satisfies the condition

mentioned above

COT 5407 1/17/17

SelectionSort - Worst-case analysis

COT 5407

SELECTIONSORT (array A)

1

D)

Fa

— OO

o'X)

N — length|A|
forp—1to N
do > Compute j

J D
for m «— » + 1 to N
do if |(A|m]| < A[J’])‘

then 7 «— m
[> Swz]_, 8 7 ’p] il l(J A [}]
temp — Alp]
Ap] « Alj]
A J] — lemp

N-p comparisons

3 data movements

SelectionSort: Worst-Case Anal

Learn how to

Data Movements sum series

N
=) 3=3x N =0(N)

p=1

Number of Comparisons N

= Z(N—p) -

p=1

N N
— Z N — Z D

p=1 p=1
— (N x N) = (N)(N +1)/2
= O(N?)

Time Complexity = O(N2)
Homework: Show it is not O(N)

COT 5407 1/17/17

SelectionSort - Space Complexity

SELECTIONSORT(array A) = Temp Space
}) 1"\7 — l(ﬂ'fl'.(jﬂl.l;‘”? » No ex-l-rq qrrqys
2 for P 1 tO‘ N | or data

do > Compute J
. — structures
9 J— P
4 form—p+1to N = O(1)
5 do if (A\m]| < Alj])
§ then 7 « m

> Swap Alpl and Alj]

7 temp — Alp]
8 A p| — Alj]
9 A j| — lemp

Recurrence; Cond

Solution

T(n) =T(n—-1)4+ 0O(1)

T{n) = O(n)

Tn) =T(n—-1)4+ O(n)

T(n) = O(n?)

'1:(‘1'1,:) — ’_1’(71. =5 (‘:) -+ ()(1)

T(n) = OC(n)

T(n) =T(n—c¢)+ O(n)

T(n) = O{n?)

T(n) =2T(n/2) + O(n)

T(n) =0O(nlogn)

T(n) = a'](w/b) + O(n);

n=h

T(n) = O(nlogn)

T(n) =aT(n/b) + O(n);

a < b

T(n) =0O(n)

T(n) = eT(n/b) + f(n);
f(‘”) = (—)(-n,_logb a—(-)

T(n) =0(n)

T(n) =aT(nfb) + f(n),
F(n) = O(nl0%a)

T(n) = ©(n'°%* logmn)

T(n) =aT(n/b) + f(n),
f(n) =9(f(n))
_q,.,r(-n,/b) i (:_f(:').)

T(n) = Q(n'°%2 logn)

Solving Recurrence Relations

Solving Recurrences: Recursion-tree method

» Substitution method fails when a good guess is not available
» Recursion-tree method works in those cases

Write down the recurrence as a tree with recursive calls as the children
» Expand the children
» Add up each level
=» Sum up the levels

» Useful for analyzing divide-and-conquer algorithms

» Also useful for generating good guesses to be used by substitution
method

COT 5407 1/17/17

COT 5407

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

diul on o
LR g
i
Jaitay
l' 5
l' \I ~
T2y i w2 cafl
[[
DRsA A
I' .\ l' \
J ' .
." .‘h »l' s\l
rprad || Ttm™) Tl Tiu'h
14 (hi 1)
A o L ——— b T
/ I
whifs vpfd s e
) P
" l‘ ‘o \'
) b ¢ 5\
! '\ J' \0
lzn iy \ ¢ \
oH i o Ml sl pu
|) . 1
! b \ AT R
(28 et | R B e
i z
v ¢ < ¢ ¢ - C C o e on
A —
d Torals on lg s + o
Figurs 2.5 Thz constriwn ol @ rawcson e for the maerenzs Tie) = 274092 + o

Part @) shows T inh, which i peopanssirely wxpanded in bi—id) 15 form the recarsinn tree, he
felly expanded tiee i piat (i) Lauc g 4 | Zovels (e L ivhas height 15 . 36 indicated. ard cach beacl
coutritules atodad o o v oo toded cost. thorefars, lg el ga + ow, whichis Himlzul.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tin) on? o’
‘!\ - | -
//i \ /// | \\\
/ 3 N\ e ; .
/ | \ /'/ | \\
T T T = (4)° e (3’ (9
7 VARN /N
/ ; \ / N / \\
TR T3 115 1) AR TUR) T Tig) Tk
(2 b (¢)
\ [V R cnd
/f/ \\\
o T
/'/ \\
:E?(< /(3)" - -23)2 m———— ﬁ('n:
/| 2 I\
7 NG 71N /N
, v AN el
logan J | / 3 Y, ! \,
» a2 " TR u s T 3 a a2 :
('IT;‘), € .‘:En; '('3., (‘(-,;) (‘(I'a) t(ﬁ)' r(f;)' “‘ﬁ". . b ([1-) cnd
: I\ /1 el ! M N
| B NI
A D R R

Y T T TAY T TCD TiD Tad) I['I)) a‘I) ‘1('13 7(1) -r(fg) i G (nVY)

e ——

P — e —-

ey T
'.ly_, 1 R ———— e

) Total: € (n*)

—— Figure 4.8 Ihe comstruction of 5 recursion tree foe the recurrence 7 (1] = I n/4) 1 oenl
Past (@} shows 7 (1), which IS progressivedy expandec m (d)=id) 1o form the recursion tree. The
fuly ecpanded troe in part (d) hus height oy w (it kas oz n 4 1 lovels),

logy2 n

Figure 4.2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cn nuonuuuunuunnnuuuuuuuéll:. C‘n
c(2) (&) . ,
; t% = 3 TR TR T TR | I ch
/ \ fo
/ .
C (g‘) C (%,l) (& (?—(’;") G (%: s fis cn
! | ! \ ’ - ; :
/ \ s \) \ '
' \‘ 'I \. ,, 3 ’ ‘\

Total: O(nlgn)

A recursion tree for the recurrence T (n) — T (n/3) + T (2n/3) 4 cn.

Solving Recurrences using Master
Theorem

Master Theorem:

Let a,b >= 1 be constants, let f(n) be a function, and let
T(n) = aT(n/b) + f(n)
. If f(n) = O(nlog a-¢) for some constant >0, then

» T(n) = Theta(nlog,)

2. If f(n) = Theta(nleg a), then
» T(n) = Theta(nlog, 2 log n)

3. If f(n) = Omega(nlcg a+e) for some constant e>0, then
= T(n) = Theta(f(n))

COT 5407

QuickSort(A, p, 1)
. If (o <r) then
QuickSort a = Partition(A, p, r)
QuickSort(A, p, g-1)
QuickSort(A, g+1, 1)

Partition(A, p, r)
Page 146, CLR X = A[r]
| = p-1
forj=ptor-1do
It A[j] <= x) then
|++
exchange(A[i], A[j])
exchange(A[i+1], Alr])
return i+1

H e O pS O r-l- For the HeapSort analysis, we need to compute:

log n] h

We know from the formula for geometric series that
>k = =
k=0 1-

Differentiating both sides, we get

zk.r"‘ = J),

Multiplying both sides by x we get

ka = l—x)"‘

Analysis

Now replace z = 1/2 to show that

SelectionSort - Worst-case analysis

COT 5407

SELECTIONSORT (array A)

1

D)

Fa

— OO

o'X)

N — length|A|
forp—1to N
do > Compute j

J D
for m «— » + 1 to N
do if |(A|m]| < A[J’])‘

then 7 «— m
[> Swz]_, 8 7 ’p] il l(J A [}]
temp — Alp]
Ap] « Alj]
A J] — lemp

N-p comparisons

3 data movements

Invariant for SelectionSort

= An appropriate invariant has a parameter
related to the progress of the algorithm (e.g.,
iteration number)

= An appropriate invariant helps in proving
algorithm is correct

» “At the end of iteration p, the p smallest items
are in their correct location”

P 5510/ CGS 5166 8/28/19

Algorithm Invariants

Selection Sort
= iteration k: the k smallest items are in correct location.

Insertion Sort
= iteration k: the first k items are in sorted order.

Bubble Sort

= |In each pass, every item that does not have a smaller item
after it, is moved as far up in the list as possible.

= [teration k: k smallest items are in the correct location.

Shaker Sort

= |n each odd (even) numbered pass, every item that does
not have a smaller (larger) item after it, is moved as far up
(down) in the list as possible.

= [teration k: the k/2 smallest and largest items are in the
correct location.

Algorithm Invariants (Cont’'d)

= Merge (many lists)
» |teration k: the k smallest items from the lists are merged.
» Heapify

» |teration with i = k: Subtrees with roots at indices k or larger satisfy the
heap property.

» HeapSort
» |teration k: Largest k items are in the right location.

= Partition (two sublists)

= |teration k (with pointers at i and j): items in locations [1..1] (locations
[i+1..j]) are at least as small (large) as the pivot.

Readings for next class

» All sorting algorithms
= QuickSort in particular

Recurrence relations for divide-and-conquer
algorithms

= Substitution method for solving recurrence
relations

