
CAP 5510 / CGS 5166

COT 6405: Analysis of
Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html
8/28/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

CAP 5510 / CGS 5166

Momentos

! Slides and Audio online
! Need to register

! Go to https://fiu.momentos.life
! If you don’t already have an account

! Click on “Sign up”
! Follow instructions & use referral code: 5T6LSV

! If you have an account, “Add Course” with code 5T6LSV
! Verify account using link sent to email

8/28/19

!2

https://fiu.momentos.life/

CAP 5510 / CGS 5166

Homework 1 is ready

! Read Submission Guidelines before starting
on homework.

8/28/19

!3

COT 5407 9/4/08

!4 Definitions

Abstract Problem: defines a function from any allowable input to a
corresponding output

Instance of a Problem: a specific input to abstract problem
Algorithm: well-defined computational procedure that takes an

instance of a problem as input and produces the correct output
An Algorithm must halt on every input with correct output.

COT 5407 9/4/08

!5 Sorting

! Input is a sequence of n items that can be compared.
! Output is an ordered list of those n items

! I.e., a reordering or permutation of the input items such that the items are in sorted order

! Fundamental problem that has received a lot of attention over the years.
! Used in many applications.
! Scores of different algorithms exist.
! Task: To compare algorithms

! On what bases?
! Time
! Space
! Other

COT 5407 9/4/08

!6 Sorting Algorithms

! Number of Comparisons
! Number of Data Movements
! Additional Space Requirements

COT 5407 9/4/08

!7 Sorting Algorithms

! SelectionSort
! InsertionSort
! BubbleSort
! ShakerSort
! MergeSort
! HeapSort
! QuickSort
! Bucket & Radix Sort
! Counting Sort

COT 5407

Worst-Case Time Analysis

! Two Techniques:
1. Counts and Summations:
! Count number of steps from pseudocode and add

2. Recurrence Relations:
! Use invariant, write down recurrence relation and solve it

! We will use big-Oh notation to write down time and space
complexity (for both worst-case & average-case analyses).

! Compute worst possible time of all input instances of length N.

1/17/17

!8

COT 5407

Definition of big-Oh

! We say that
! F(n) = O(G(n))

 If there exists positive constants, c and n0, such that
! For all n ≥ n0, we have F(n) ≤ c G(n)

1/17/17

!9

COT 5407

To prove big-Oh relationships

! We say that
! F(n) = O(G(n))

 If there exists positive constants, c and n0, such that
! For all n ≥ n0, we have F(n) ≤ c G(n)

! To show that F(n) = O(G(n)), you need to find two
positive constants that satisfy the condition mentioned
above

1/17/17

!10

COT 5407

Definition of big-Oh

! We say that
! F(n) = O(G(n))

 If there exists two positive constants, c and n0, such that
! For all n ≥ n0, we have F(n) ≤ c G(n)

! We say that
! F(n) ≠ O(G(n))

 If for any positive constant, c, such that
! There exists n ≥ n0, we have F(n) > c G(n)

1/17/17

!11

COT 5407

To disprove big-Oh relationships

! We say that
! F(n) ≠ O(G(n))

 If for any positive constant, c, such that
! There exists n ≥ n0, we have F(n) > c G(n)

! To show that F(n) ≠ O(G(n)),
! need to show that for any positive value of c, there does not

exist a positive constant n0 that satisfies the condition
mentioned above

1/17/17

!12

COT 5407 1/17/17

!13 SelectionSort – Worst-case analysis

N-p comparisons

3 data movements

COT 5407

SelectionSort: Worst-Case Analysis
! Data Movements

! Number of Comparisons

! Time Complexity = O(N2)
! Homework: Show it is not O(N)

1/17/17

!14

Learn how to
sum series

COT 5407

SelectionSort – Space Complexity

1/17/17

!15

! Temp Space
! No extra arrays

or data
structures

! O(1)

COT 5407

Solving Recurrence Relations

1/17/17

!16

COT 5407 1/17/17

!17 Solving Recurrences: Recursion-tree method

! Substitution method fails when a good guess is not available
! Recursion-tree method works in those cases

! Write down the recurrence as a tree with recursive calls as the children
! Expand the children
! Add up each level
! Sum up the levels

! Useful for analyzing divide-and-conquer algorithms
! Also useful for generating good guesses to be used by substitution

method

COT 5407 1/17/17

!18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COT 5407 1/17/17

!19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COT 5407 1/17/17

!20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COT 5407 1/17/17

!21 Solving Recurrences using Master
Theorem
Master Theorem:
 Let a,b >= 1 be constants, let f(n) be a function, and let
 T(n) = aT(n/b) + f(n)
1. If f(n) = O(nlog

b
a-e) for some constant e>0, then

! T(n) = Theta(nlog
b

a)

2. If f(n) = Theta(nlog
b

a), then
! T(n) = Theta(nlog

b
a log n)

3. If f(n) = Omega(nlog
b

a+e) for some constant e>0, then
! T(n) = Theta(f(n))

CAP 5510 / CGS 5166

QuickSort

8/28/19

!22

QuickSort(A, p, r)
 if (p < r) then
 q = Partition(A, p, r)
 QuickSort(A, p, q-1)
 QuickSort(A, q+1, r)

Partition(A, p, r)
 x = A[r]
 i = p-1
 for j = p to r-1 do
 if A[j] <= x) then
 i++
 exchange(A[i], A[j])
exchange(A[i+1], A[r])
return i+1

Page 146, CLR

!23 HeapSort
Analysis

COT 5407 1/17/17

!24 SelectionSort – Worst-case analysis

N-p comparisons

3 data movements

CAP 5510 / CGS 5166

Invariant for SelectionSort

! An appropriate invariant has a parameter
related to the progress of the algorithm (e.g.,
iteration number)

! An appropriate invariant helps in proving
algorithm is correct

! “At the end of iteration p, the p smallest items
are in their correct location”

8/28/19

!25

!26 Algorithm Invariants
! Selection Sort

! iteration k: the k smallest items are in correct location.
! Insertion Sort

! iteration k: the first k items are in sorted order.

! Bubble Sort
! In each pass, every item that does not have a smaller item

after it, is moved as far up in the list as possible.
! Iteration k: k smallest items are in the correct location.

! Shaker Sort
! In each odd (even) numbered pass, every item that does

not have a smaller (larger) item after it, is moved as far up
(down) in the list as possible.

! Iteration k: the k/2 smallest and largest items are in the
correct location.

!27 Algorithm Invariants (Cont’d)

! Merge (many lists)
! Iteration k: the k smallest items from the lists are merged.

! Heapify
! Iteration with i = k: Subtrees with roots at indices k or larger satisfy the

heap property.
! HeapSort

! Iteration k: Largest k items are in the right location.
! Partition (two sublists)

! Iteration k (with pointers at i and j): items in locations [1..I] (locations
[i+1..j]) are at least as small (large) as the pivot.

CAP 5510 / CGS 5166

Readings for next class

! All sorting algorithms
! QuickSort in particular
! Recurrence relations for divide-and-conquer

algorithms
! Substitution method for solving recurrence

relations

8/28/19

!28

