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Homework 1 is ready

» Read Submission Guidelines before starting
on homework.




Definitions

Abstract Problem: defines a function from any allowablg input to a
corresponding output
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Instance of a Problem: a specific input to abstract probiem

Algorithm: well-defined computational procedure that takes an
instance of a problem as input and produces the correct output

An Algorithm must halt on every input with correct output.
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Sorting

» |nputis a sequence of n items that can be compared.

=  Qutputis an ordered list of those n items
» |.e., areordering or permutation of the input items such that the items are in sorted order

Fundamental problem that has received a lot of attention over the years.

Used in many applications.

Scores of different algorithms exist.
Task: To compare algorithms

=» On what bases?

= Time

= Space

= Other
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Sorting Algorithms

» Number of Comparisons
» Number of Data Movements
Additional Space Requirements
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Sorting Algorithms

SelectionSort
InsertionSort
BubbleSort
ShakerSort
MergeSort
HeapSort
QuickSort

Bucket & Radix Sort
Counting Sort
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Worst-Case Time Analysis

» Two Techniques:
1. Counts and Summations:
= Count number of steps from pseudocode and add
2. Recurrence Relations:

= Use invariant, write down recurrence relation and solve it

» We will use big-Oh notation to write down time and space
complexity (for both worst-case & average-case analyses).

» Compute worst possible time of all input instances of length N.
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Definition of big-Oh

» We say that
= F(n) = O(G(n))
f there exists positive constants, ¢ and n,, such that

» Forall n 2 n, we have E(n) Sc G(n)\




To prove big-Oh relationships

» We say that
= F(n) = O(G(n))
If there exists positive constants, ¢ and n,, such that

» For all n 2 n,, we have ﬂ(_n) < c G(n) \

= To show that F(n) = O(G(n)), you need to find two

positive constants that satisfy the condition mentioned
above
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Definition of big-Oh

» We say that
= F(n) = O(G(n))

If there exists two positive constants, ¢ and n,, such that
» Forallnz2n, we have I{n) <c Gini \

» We say that
= F(n) # O(G(n))

If for any positive constant, g.-such-the
» There exists n 2 n,, we have F
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To disprove big-Oh relationships

» We say that
= F(n) # O(G(n))
If for any positive constant, ¢, such that
» There exists n 2 n,, we have F(]n) > ¢ G(n) ‘

= To show that F(n) # O(G(n)),

» need to show that for any positive value of ¢, there does not
exist a positive constant nythat satisfies the condition

mentioned above
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SelectionSort - Worst-case analysis

COT 5407

SELECTIONSORT (array A)

1

D)

Fa

— OO

o'X)

N — length|A|
forp—1to N
do > Compute j

J D
for m «— » + 1 to N
do if |(A|m]| < A[J’])‘

then 7 «— m
[> Swz]_, 8 7 ’p] il l(J A [}]
temp — Alp]
Ap] « Alj]
A J] — lemp

N-p comparisons

3 data movements



SelectionSort: Worst-Case Anal

Learn how to

Data Movements sum series

N
=) 3=3x N =0(N)

p=1

Number of Comparisons N

= Z(N—p) -

p=1

N N
— Z N — Z D

p=1 p=1
— (N x N) = (N)(N +1)/2
= O(N?)

Time Complexity = O(N2)
Homework: Show it is not O(N)
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SelectionSort - Space Complexity

SELECTIONSORT(array A) = Temp Space
}) 1"\7 — l(ﬂ'fl'.(jﬂl.l;‘”? » No ex-l-rq qrrqys
2 for P 1 tO‘ N | or data

do > Compute J
. — structures
9 J— P
4 form—p+1to N = O(1)
5 do if (A\m]| < Alj])
§ then 7 « m

> Swap Alpl and Alj]

7 temp — Alp]
8 A p| — Alj]
9 A j| — lemp




Recurrence; Cond

Solution

T(n) =T(n—-1)4+ 0O(1)

T{n) = O(n)

Tn) =T(n—-1)4+ O(n)

T(n) = O(n?)

'1:(‘1'1,:) — ’_1’(71. =5 (‘:) -+ ()(1)

T(n) = OC(n)

T(n) =T(n—c¢)+ O(n)

T(n) = O{n?)

T(n) =2T(n/2) + O(n)

T(n) =0O(nlogn)

T(n) = a'](w/b) + O(n);

n=h

T(n) = O(nlogn)

T(n) =aT(n/b) + O(n);

a < b

T(n) =0O(n)

T(n) = eT(n/b) + f(n);
f(‘”) = (—)(-n,_logb a—(-)

T(n) =0(n)

T(n) =aT(nfb) + f(n),
F(n) = O(nl0%a)

T(n) = ©(n'°%* logmn)

T(n) =aT(n/b) + f(n),
f(n) =9(f(n))
_q,.,r(-n,/b) i (:_f(:').)

T(n) = Q(n'°%2 logn)

Solving Recurrence Relations



Solving Recurrences: Recursion-tree method

» Substitution method fails when a good guess is not available
» Recursion-tree method works in those cases

Write down the recurrence as a tree with recursive calls as the children
» Expand the children
» Add up each level
=» Sum up the levels

» Useful for analyzing divide-and-conquer algorithms

» Also useful for generating good guesses to be used by substitution
method
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Solving Recurrences using Master
Theorem

Master Theorem:

Let a,b >= 1 be constants, let f(n) be a function, and let
T(n) = aT(n/b) + f(n)
. If f(n) = O(nlog a-¢) for some constant >0, then

» T(n) = Theta(nlog, )

2. If f(n) = Theta(nleg a), then
» T(n) = Theta(nlog, 2 log n)

3. If f(n) = Omega(nlcg a+e) for some constant e>0, then
= T(n) = Theta(f(n))
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QuickSort(A, p, 1)
. If (o <r) then
QuickSort a = Partition(A, p, r)
QuickSort(A, p, g-1)
QuickSort(A, g+1, 1)

Partition(A, p, r)
Page 146, CLR X = A[r]
| = p-1
forj=ptor-1do
It A[j] <= x) then
|++
exchange(A[i], A[j])
exchange(A[i+1], Alr])
return i+1




H e O pS O r-l- For the HeapSort analysis, we need to compute:

log n] h

We know from the formula for geometric series that
>k = =
k=0 1-

Differentiating both sides, we get

zk.r"‘ = J),

Multiplying both sides by x we get

ka = l—x)"‘

Analysis

Now replace z = 1/2 to show that




SelectionSort - Worst-case analysis
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SELECTIONSORT (array A)

1

D)

Fa

— OO

o'X)

N — length|A|
forp—1to N
do > Compute j

J D
for m «— » + 1 to N
do if |(A|m]| < A[J’])‘

then 7 «— m
[> Swz]_, 8 7 ’p] il l(J A [}]
temp — Alp]
Ap] « Alj]
A J] — lemp

N-p comparisons

3 data movements



Invariant for SelectionSort

= An appropriate invariant has a parameter
related to the progress of the algorithm (e.g.,
iteration number)

= An appropriate invariant helps in proving
algorithm is correct

» “At the end of iteration p, the p smallest items
are in their correct location”
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Algorithm Invariants

Selection Sort
= iteration k: the k smallest items are in correct location.

Insertion Sort
= iteration k: the first k items are in sorted order.

Bubble Sort

= |In each pass, every item that does not have a smaller item
after it, is moved as far up in the list as possible.

= [teration k: k smallest items are in the correct location.

Shaker Sort

= |n each odd (even) numbered pass, every item that does
not have a smaller (larger) item after it, is moved as far up
(down) in the list as possible.

= [teration k: the k/2 smallest and largest items are in the
correct location.



Algorithm Invariants (Cont’'d)

= Merge (many lists)
» |teration k: the k smallest items from the lists are merged.
» Heapify

» |teration with i = k: Subtrees with roots at indices k or larger satisfy the
heap property.

» HeapSort
» |teration k: Largest k items are in the right location.

= Partition (two sublists)

= |teration k (with pointers at i and j): items in locations [1..1] (locations
[i+1..j]) are at least as small (large) as the pivot.



Readings for next class

» All sorting algorithms
= QuickSort in particular

Recurrence relations for divide-and-conquer
algorithms

= Substitution method for solving recurrence
relations




