COT 6405: Analysis of Algorithms Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html

CAP 5510 / CGS 5166

2 Momentos

- Slides and Audio online
- Need to register
 - Go to <u>https://fiu.momentos.life</u>
 - If you don't already have an account
 - Click on "Sign up"
 - Follow instructions & use referral code: 5T6LSV
 - If you have an account, "Add Course" with code 5T6LSV
 - Verify account using link sent to email

³ Homework 1 is ready

Read Submission Guidelines before starting on homework.

Abstract Problem: defines a function from any allowable input to a corresponding output

Instance of a Problem: a specific input to abstract problem

Algorithm: well-defined computational procedure that takes an instance of a problem as input and produces the correct output

An Algorithm must halt on every input with correct output.

COT 5407

- Input is a sequence of **n** items that can be compared.
- Output is an ordered list of those n items
 - I.e., a reordering or permutation of the input items such that the items are in sorted order
- Fundamental problem that has received a lot of attention over the years.
- Used in many applications.
- Scores of different algorithms exist.
- Task: To compare algorithms
 - On what bases?
 - Time
 - Space
 - Other

Sorting Algorithms

- Number of Comparisons
- Number of Data Movements
- Additional Space Requirements

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket & Radix Sort
- Counting Sort

Worst-Case Time Analysis

Two Techniques:

- 1. Counts and Summations:
 - Count number of steps from pseudocode and add
- 2. Recurrence Relations:
 - Use invariant, write down recurrence relation and solve it
- We will use big-Oh notation to write down time and space complexity (for both worst-case & average-case analyses).
- Compute worst possible time of all input instances of length N.

Definition of big-Oh

We say that
F(n) = O(G(n))
If there exists positive constants, c and n₀, such that
For all n ≥ n₀, we have F(n) ≤ c G(n)

To prove big-Oh relationships

- We say that
 - F(n) = O(G(n))

If there exists **positive** constants, **c** and **n**₀, such that

For all $n \ge n_0$, we have $F(n) \le C G(n)$

To show that F(n) = O(G(n)), you need to find two positive constants that satisfy the condition mentioned above

Definition of big-Oh

- We say that
 - F(n) = O(G(n))

If there exists two positive constants, c and n₀, such that

- For all $n \ge n_0$, we have $F(n) \le C G(n)$
- We say that
 - F(n) ≠ O(G(n))

If for any positive constant, c, such that

There exists n ≥ n₀, we have F(n) > c G(n)

12 To disprove big-Oh relationships

- We say that
 - F(n) ≠ O(G(n))
 - If for any positive constant, c, such that
 - → There exists $n \ge n_0$, we have F(n) > C G(n)
- To show that $F(n) \neq O(G(n))$,
 - need to show that for any positive value of c, there does not exist a positive constant n₀ that satisfies the condition mentioned above

SelectionSort – Worst-case analysis

SelectionSort(array A) $1 \quad N \leftarrow length|A|$ 2 for $p \leftarrow 1$ to N $\mathbf{do} \triangleright \mathbf{Compute} \ j$ 3 $j \leftarrow p$ 4 for $m \leftarrow p + 1$ to N N-p comparisons do if (A[m] < A[j])5 6 then $j \leftarrow m$ \triangleright Swap A[p] and A[j] $temp \leftarrow A[p]$ 3 data movements $A[p] \leftarrow A[j]$ 8 - lemp 9

COT 5407

13

1/17/17

SelectionSort: Worst-Case Analysis

SelectionSort – Space Complexity

SELECTIONSORT(array A) $1 \quad N \leftarrow length|A|$ for $p \leftarrow 1$ to N 2 $\mathbf{do} \triangleright \mathbf{Compute} \ j$ 3 p4 for $m \leftarrow p+1$ to N 5 do if (A[m] < A[j])then $j \leftarrow m$ 6 \triangleright Swap A[p] and A[j]7 $temp \leftarrow A[p]$ 8 $A[p] \leftarrow A[j]$ 9 $A[j] \leftarrow temp$

15

Temp Space

No extra arrays or data structures

```
O(1)
```

Solving Recurrence Relations

Recurrence; Cond	Solution
T(n) = T(n-1) + O(1)	T(n) = O(n)
T(n) = T(n-1) + O(n)	$T(n) = O(n^2)$
T(n) = T(n-c) + O(1)	T(n) = O(n)
T(n) = T(n-c) + O(n)	$T(n) = O(n^2)$
T(n) = 2T(n/2) + O(n)	$T(n) = O(n \log n)$
T(n) = aT(n/b) + O(n);	$T(n) = O(n \log n)$
a = b	
T(n) = aT(n/b) + O(n);	T(n) = O(n)
a < b	
T(n) = aT(n/b) + f(n);	T(n) = O(n)
$f(n) = O(n^{\log_b a - \epsilon})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Theta(n^{\log_b a} \log n)$
$f(n) = O(n^{\log_b a})$	
T(n) = aT(n/b) + f(n);	$T(n) = \Omega(n^{\log_b a} \log n)$
$f(n) = \Theta(f(n))$	Proproduce and Common Anne and Anne a
$af(n/b) \leq cf(n)$	

16

1/17/17

Solving Recurrences: Recursion-tree method

- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
 - Write down the recurrence as a tree with recursive calls as the children
 - Expand the children
 - Add up each level
 - Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

contributes a total cost of cn. The total cost, therefore, is $cn \lg u + cn$, which is $\Theta(n \lg u)$.

COT 5407

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19

1/17/17

1/17/17

Solving Recurrences using Master Theorem

Master Theorem:

Let a,b >= 1 be constants, let f(n) be a function, and let

T(n) = aT(n/b) + f(n)

- 1. If $f(n) = O(n^{\log_b a e})$ for some constant e > 0, then
 - **T(n) = Theta(n** $\log_b^{\alpha})$
- 2. If $f(n) = Theta(n^{\log_{b} \alpha})$, then
 - **T(n) = Theta** $(n^{\log}b^{\alpha} \log n)$
- 3. If $f(n) = Omega(n^{\log_{b} a+e})$ for some constant e>0, then
 - T(n) = Theta(f(n))

22

QuickSort

QuickSort(A, p, r) if (p < r) then q = Partition(A, p, r) QuickSort(A, p, q-1) QuickSort(A, q+1, r)

Partition(A, p, r)	
Page 146, CLR	x = A[r]
	i = p-1
	for $j = p$ to r-1 do
	if A[j] <= x) then
	i++
	exchange(A[i], A[j])
	exchange(A[i+1], A[r])
	return i+1

CAP 5510 / CGS 5166

For the HeapSort analysis, we need to compute:

$$-\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}$$

We know from the formula for geometric series that

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

Differentiating both sides, we get

$$\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$$

Multiplying both sides by x we get

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$

Now replace x = 1/2 to show that

 $\sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h} \le \frac{1}{2}$

SelectionSort – Worst-case analysis

SelectionSort(array A) $1 \quad N \leftarrow length|A|$ 2 for $p \leftarrow 1$ to N $\mathbf{do} \triangleright \mathbf{Compute} \ j$ 3 $j \leftarrow p$ 4 for $m \leftarrow p + 1$ to N N-p comparisons do if (A[m] < A[j])5 6 then $j \leftarrow m$ \triangleright Swap A[p] and A[j] $temp \leftarrow A[p]$ 3 data movements $A[p] \leftarrow A[j]$ 8 - lemp 9

COT 5407

24

1/17/17

Invariant for SelectionSort

- An appropriate invariant has a parameter related to the progress of the algorithm (e.g., iteration number)
- An appropriate invariant helps in proving algorithm is correct
- At the end of iteration p, the p smallest items are in their correct location"

Algorithm Invariants

Selection Sort

26

- iteration k: the k smallest items are in correct location.
- Insertion Sort
 - iteration k: the first k items are in sorted order.
- **Bubble Sort**
 - In each pass, every item that does not have a smaller item after it, is moved as far up in the list as possible.
 - Iteration k: k smallest items are in the correct location.

Shaker Sort

- In each odd (even) numbered pass, every item that does not have a smaller (larger) item after it, is moved as far up (down) in the list as possible.
- Iteration k: the k/2 smallest and largest items are in the correct location.

Algorithm Invariants (Cont'd)

Merge (many lists)

- Iteration k: the k smallest items from the lists are merged.
- Heapify

- Iteration with i = k: Subtrees with roots at indices k or larger satisfy the heap property.
- HeapSort
 - Iteration k: Largest k items are in the right location.
- Partition (two sublists)
 - Iteration k (with pointers at i and j): items in locations [1...] (locations [i+1..j]) are at least as small (large) as the pivot.

Readings for next class

- All sorting algorithms
- QuickSort in particular
- Recurrence relations for divide-and-conquer algorithms
- Substitution method for solving recurrence relations