COT 6405: Analysis of Algorithms

Giri NARASIMHAN

Momentos

- Slides and Audio online
- Need to register
 - Go to https://fiu.momentos.life
 - If you don’t already have an account
 - Click on “Sign up”
 - Follow instructions & use referral code: **5T6LSV**
 - If you have an account, “Add Course” with code **5T6LSV**
 - Verify account using link sent to email
Homework 1 is ready

- Read Submission Guidelines before starting on homework.
Definitions

Abstract Problem: defines a function from any allowable input to a corresponding output

Instance of a Problem: a specific input to abstract problem

Algorithm: well-defined computational procedure that takes an instance of a problem as input and produces the correct output

An Algorithm must halt on every input with correct output.
Sorting

- Input is a sequence of n items that can be compared.
- Output is an ordered list of those n items
 - i.e., a reordering or permutation of the input items such that the items are in sorted order
- Fundamental problem that has received a lot of attention over the years.
- Used in many applications.
- Scores of different algorithms exist.
- Task: To compare algorithms
 - On what bases?
 - Time
 - Space
 - Other
Sorting Algorithms

- Number of Comparisons
- Number of Data Movements
- Additional Space Requirements
Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket & Radix Sort
- Counting Sort
Worst-Case Time Analysis

- Two Techniques:

 1. **Counts and Summations:**
 - Count number of steps from pseudocode and add

 2. **Recurrence Relations:**
 - Use invariant, write down recurrence relation and solve it

We will use big-Oh notation to write down time and space complexity (for both worst-case & average-case analyses).

- Compute worst possible time of all input instances of length N.
Definition of big-Oh

- We say that
 - $F(n) = O(G(n))$

 If there exists positive constants, c and n_0, such that
 - For all $n \geq n_0$, we have $F(n) \leq c \cdot G(n)$
To prove big-Oh relationships

- We say that
 - \(F(n) = \mathcal{O}(G(n)) \)

If there exists positive constants, \(c \) and \(n_0 \), such that
- For all \(n \geq n_0 \), we have \(F(n) \leq c \cdot G(n) \)

To show that \(F(n) = \mathcal{O}(G(n)) \), you need to find two positive constants that satisfy the condition mentioned above.
Definition of big-Oh

- We say that
 - $F(n) = O(G(n))$

 If there exists two positive constants, c and n_0, such that
 - For all $n \geq n_0$, we have $F(n) \leq c \cdot G(n)$

- We say that
 - $F(n) \neq O(G(n))$

 If for any positive constant, c, such that
 - There exists $n \geq n_0$, we have $F(n) > c \cdot G(n)$
To disprove big-Oh relationships

We say that

F(n) ≠ O(G(n))

If for any positive constant, c, such that

There exists n ≥ n₀, we have F(n) > c G(n)

To show that F(n) ≠ O(G(n)),

need to show that for any positive value of c, there does not exist a positive constant n₀ that satisfies the condition mentioned above
SelectionSort – Worst-case analysis

```plaintext
SELECTIONSORT(array A)
1  N ← length[A]
2  for p ← 1 to N
3      j ← p
4      for m ← p + 1 to N
5          do if (A[m] < A[j])
6              then j ← m
7      ▷ Swap A[p] and A[j]
8      temp ← A[p]
10     A[j] ← temp
```

N-p comparisons

3 data movements
SelectionSort: Worst-Case Analysis

- **Data Movements**

 \[\sum_{p=1}^{N} 3 = 3 \times N = O(N) \]

- **Number of Comparisons**

 \[\sum_{p=1}^{N} (N - p) \]
 \[\sum_{p=1}^{N} N - \sum_{p=1}^{N} p \]
 \[(N \times N) - (N)(N + 1)/2 \]
 \[O(N^2) \]

- **Time Complexity** = \(O(N^2) \)

- **Homework**: Show it is not \(O(N) \)
SelectionSort – Space Complexity

- Temp Space
 - No extra arrays or data structures
 - O(1)

```plaintext
SELECTIONSORT(array A)
1    N ← length[A]
2    for p ← 1 to N
3        j ← p
4            for m ← p + 1 to N
5                if (A[m] < A[j])
6                    then j ← m
7            ▷ Swap A[p] and A[j]
8        temp ← A[p]
10       A[j] ← temp
```
Solving Recurrence Relations

<table>
<thead>
<tr>
<th>Recurrence; Cond</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = T(n-1) + O(1)$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = T(n-1) + O(n)$</td>
<td>$T(n) = O(n^2)$</td>
</tr>
<tr>
<td>$T(n) = T(n-c) + O(1)$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = T(n-c) + O(n)$</td>
<td>$T(n) = O(n^2)$</td>
</tr>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>$T(n) = O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + O(n); \quad a = b$</td>
<td>$T(n) = O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + O(n); \quad a < b$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + f(n); \quad f(n) = O(n^{\log_b a - \epsilon})$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + f(n); \quad f(n) = O(n^{\log_b a})$</td>
<td>$T(n) = \Theta(n^{\log_b a} \log n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + f(n); \quad f(n) = \Theta(f(n)); \quad af(n/b) \leq cf(n)$</td>
<td>$T(n) = \Omega(n^{\log_b a} \log n)$</td>
</tr>
</tbody>
</table>
Solving Recurrences: Recursion-tree method

- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
 - Write down the recurrence as a tree with recursive calls as the children
 - Expand the children
 - Add up each level
 - Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method
Figure 2.5 The construction of a recursion tree for the recurrence $T(n) = 3T(n/2) + cn$.

Part (a) shows $T(n)$, which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n + 1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of cn. The total cost, therefore, is $cn(\lg n + 1)$, which is $O(n \lg n)$.
Figure 4.1 The construction of a recursion tree for the recurrence \(T(n) = 3T(n/4) + cn^2 \).

Part (a) shows \(T(n) \), which is progressively expanded in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has height \(\log_4 n \) (it has \(\log_4 n + 1 \) levels).
Figure 4.2 A recursion tree for the recurrence $T(n) = T(n/3) + T(2n/3) + cn$.

Total: $O(n \log n)$
Solving Recurrences using Master Theorem

Master Theorem:

Let $a,b \geq 1$ be constants, let $f(n)$ be a function, and let

$$T(n) = aT(n/b) + f(n)$$

1. If $f(n) = O(n^{\log_b a-e})$ for some constant $e>0$, then
 $$T(n) = \Theta(n^{\log_b a})$$

2. If $f(n) = \Theta(n^{\log_b a})$, then
 $$T(n) = \Theta(n^{\log_b a \log n})$$

3. If $f(n) = \Omega(n^{\log_b a+e})$ for some constant $e>0$, then
 $$T(n) = \Theta(f(n))$$
QuickSort

QuickSort(A, p, r)
if (p < r) then
 q = Partition(A, p, r)
 QuickSort(A, p, q-1)
 QuickSort(A, q+1, r)

Partition(A, p, r)
x = A[r]
i = p-1
for j = p to r-1 do
 if A[j] <= x) then
 i++
 exchange(A[i], A[j])
exchange(A[i+1], A[r])
return i+1
For the HeapSort analysis, we need to compute:

$$\sum_{h=0}^{[\log n]} \frac{h}{2^h}$$

We know from the formula for geometric series that

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

Differentiating both sides, we get

$$\sum_{k=0}^{\infty} k x^{k-1} = \frac{1}{(1-x)^2}$$

Multiplying both sides by x we get

$$\sum_{k=0}^{\infty} k x^k = \frac{x}{(1-x)^2}$$

Now replace $x = 1/2$ to show that

$$\sum_{h=0}^{[\log n]} \frac{h}{2^h} \leq \frac{1}{2}$$
SelectionSort – Worst-case analysis

```
SELECTIONSORT (array A)
1 N ← length[A]
2 for p ← 1 to N
doi Compute j
3 j ← p
4 for m ← p + 1 to N
do if (A[m] < A[j])
5 then j ← m
6 ▷ Swap A[p] and A[j]
7 temp ← A[p]
9 A[j] ← temp
```

N-p comparisons

3 data movements
Invariant for SelectionSort

- An appropriate invariant has a parameter related to the progress of the algorithm (e.g., iteration number)
- An appropriate invariant helps in proving algorithm is correct
- “At the end of iteration p, the p smallest items are in their correct location”
Algorithm Invariants

- **Selection Sort**
 - iteration k: the k smallest items are in correct location.

- **Insertion Sort**
 - iteration k: the first k items are in sorted order.

- **Bubble Sort**
 - In each pass, every item that does not have a smaller item after it, is moved as far up in the list as possible.
 - Iteration k: the k smallest items are in the correct location.

- **Shaker Sort**
 - In each odd (even) numbered pass, every item that does not have a smaller (larger) item after it, is moved as far up (down) in the list as possible.
 - Iteration k: the $k/2$ smallest and largest items are in the correct location.
Algorithm Invariants (Cont’d)

- **Merge (many lists)**
 - Iteration k: the k smallest items from the lists are merged.

- **Heapify**
 - Iteration with $i = k$: Subtrees with roots at indices k or larger satisfy the heap property.

- **HeapSort**
 - Iteration k: Largest k items are in the right location.

- **Partition (two sublists)**
 - Iteration k (with pointers at i and j): items in locations $[1..i]$ (locations $[i+1..j]$) are at least as small (large) as the pivot.
Readings for next class

- All sorting algorithms
- QuickSort in particular
- Recurrence relations for divide-and-conquer algorithms
- Substitution method for solving recurrence relations