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!2 Sorting Algorithms

! SelectionSort 
! InsertionSort 
! BubbleSort 
! ShakerSort 
! MergeSort 
! HeapSort 
! QuickSort 
! Bucket & Radix Sort 
! Counting Sort
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Solving Recurrence Relations
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!4 Solving Recurrences: Recursion-tree method

! Substitution method fails when a good guess is not available 
! Recursion-tree method works in those cases 

! Write down the recurrence as a tree with recursive calls as the children 
! Expand the children  
! Add up each level  
! Sum up the levels 

! Useful for analyzing divide-and-conquer algorithms 
! Also useful for generating good guesses to be used by substitution 

method
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!8 Solving Recurrences using Master 
Theorem
Master Theorem: 
 Let a,b >= 1 be constants, let f(n) be a function, and let  
   T(n) = aT(n/b) + f(n) 
1. If f(n) = O(nlog

b
a-e) for some constant e>0, then      

! T(n) = Theta(nlog
b

a) 

2. If f(n) = Theta(nlog
b

a), then         
! T(n) = Theta(nlog

b
a log n) 

3. If f(n) = Omega(nlog
b

a+e) for some constant e>0, then     
! T(n) = Theta(f(n))
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QuickSort

9/4/19
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QuickSort(A, p, r) 
    if (p < r) then 
        q = Partition(A, p, r) 
        QuickSort(A, p, q-1) 
        QuickSort(A, q+1, r) 

Partition(A, p, r) 
  x = A[r] 
  i = p-1 
  for j = p to r-1 do  
      if A[j] <= x) then  
          i++ 
          exchange(A[i], A[j]) 
exchange(A[i+1], A[r]) 
return i+1

Page 146, CLR



!10 HeapSort 
Analysis
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!11 SelectionSort – Worst-case analysis

N-p comparisons

3 data movements
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Invariant for SelectionSort

! An appropriate invariant has a parameter 
related to the progress of the algorithm (e.g., 
iteration number) 

! An appropriate invariant helps in proving 
algorithm is correct 

! “At the end of iteration p, the p smallest items 
are in their correct location”

9/4/19
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!13 Algorithm Invariants
! Selection Sort 

! iteration k: the k smallest items are in correct location. 
! Insertion Sort 

! iteration k: the first k items are in sorted order. 

! Bubble Sort 
! In each pass, every item that does not have a smaller item 

after it, is moved as far up in the list as possible. 
! Iteration k: k smallest items are in the correct location. 

! Shaker Sort 
! In each odd (even) numbered pass, every item that does 

not have a smaller (larger) item after it, is moved as far up 
(down) in the list as possible. 

! Iteration k: the k/2 smallest and largest items are in the 
correct location.



!14 Algorithm Invariants (Cont’d)

! Merge (many lists) 
! Iteration k: the k smallest items from the lists are merged. 

! Heapify 
! Iteration with i = k: Subtrees with roots at indices k or larger satisfy the 

heap property. 
! HeapSort 

! Iteration k: Largest k items are in the right location. 
! Partition (two sublists) 

! Iteration k (with pointers at i and j): items in locations [1..I] (locations 
[i+1..j]) are at least as small (large) as the pivot.
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Definition of big-Oh

! We say that  
! F(n) = O(G(n)) 

     If there exists two positive constants, c and n0, such that  
! For all n ≥ n0, we have F(n) ≤ c G(n) 

• Thus, to show that F(n) = O(G(n)), you need to find two positive constants 
that satisfy the condition mentioned above 

• Also, to show that F(n) ≠ O(G(n)), you need to show that for any value of 
c, there does not exist a positive constant n0 that satisfies the condition 
mentioned above

1/17/17
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!16 Algorithm Analysis

! Worst-case time complexity* 
! Worst possible time of all input instances of length N 

! (Worst-case) space complexity 
! Worst possible spaceof all input instances of length N 

! Average-case time complexity 
! Average time of all input instances of length N



CAP 5510 / CGS 5166

Computation Tree for A on n inputs
! Assume A is a comparison-based sorting alg 
! Every node represents a comparison between two 

items in A 
! Branching based on result of comparison 
! Leaf corresponds to algorithm halting with output 
! Every input follows a path in tree 
! Different inputs follow different paths 
! Time complexity on input x = depth of leaf where it 

ends on input x

9/4/19
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Upper and Lower Bounds
! Time Complexity of a Problem 

! Difficulty: Since there can be many algorithms that solve a problem, what time 
complexity should we pick? 

! Solution: Define upper bounds and lower bounds within which the time complexity lies. 
! What is the upper bound on time complexity of sorting? 

! Answer: Since SelectionSort runs in worst-case O(N2) and MergeSort runs in O(N log N), 
either one works as an upper bound.  

! Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e., 
time complexity of the best algorithm. 

! What is the lower bound on time complexity of sorting? 
! Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no 

algorithm that sorts N items can run in worst-case time o(f(N)). 

1/19/17
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Lower Bounds
! It’s possible to prove lower bounds for many comparison-based 

problems.  
! For comparison-based problems, for inputs of length N, if there are P(N) 

possible solutions, then  
! any algorithm needs log2(P(N)) to solve the problem.  

! Binary Search on a list of N items has at least N + 1 possible solutions. 
Hence lower bound is  
! log2(N+1).  

! Sorting a list of N items has at least N! possible solutions. Hence lower 
bound is 
! log2(N!) = O(N log N) 

! Thus, MergeSort is an optimal algorithm.  
! Because its worst-case time complexity equals lower bound!

1/19/17
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Beating the Lower Bound
! Bucket Sort 

! Runs in time O(N+K) given N integers in range [a+1, a+K] 
! If K = O(N), we are able to sort in O(N) 
! How is it possible to beat the lower bound?  
! Only because we know more about the data.  
! If nothing is know about the data, the lower bound holds. 

! Radix Sort 
! Runs in time O(d(N+K)) given N items with d digits each in range 

[1,K] 
! Counting Sort 

! Runs in time O(N+K) given N items in range [a+1, a+K]

1/19/17
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!21 Stable Sort

! A sort is stable if equal elements appear in 
the same order in both the input and the 
output. 

! Which sorts are stable? Homework!
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!22 Order Statistics
! Maximum, Minimum 

! Upper Bound 
! O(n) because ?? 
! We have an algorithm with a single for-loop: n-1 comparisons 

! Lower Bound 
!n-1 comparisons 

! MinMax 
! Upper Bound: 2(n-1) comparisons 
! Lower Bound: 3n/2 comparisons 

! Max and 2ndMax 
! Upper Bound: (n-1) + (n-2) comparisons 
! Lower Bound: Harder to prove

7 3 1 9 4 8 2 5 0

RankA(x) = 
position of x in 
sorted order of A
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!23 k-Selection; Median
! Select the k-th smallest item in list 
! Naïve Solution 

! Sort;  
! pick the k-th smallest item in sorted list. 
   O(n log n) time complexity 

! Idea: Modify Partition from QuickSort 
! How? 

! Randomized solution: Average case O(n) 
! Improved Solution: worst case O(n)
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Using Partition for k-Selection

! Perform Partition from 
QuickSort (assume all 
unique items) 

! Rank(pivot) = 1 + # of items 
that are smaller than pivot 

! If Rank(pivot) = k, we are 
done 

! Else, recursively perform k-
Selection in one of the  two 
partitions 

1/26/17
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!25 QuickSelect: a variant of QuickSort
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k-Selection Time Complexity
! Perform Partition from QuickSort (assume all unique items) 
! Rank(pivot) = 1 + # of items that are smaller than pivot 
! If Rank(pivot) = k, we are done 
! Else, recursively perform k-Selection in one of the two partitions 

1/26/17
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• On the average: 
▪ Rank(pivot) = n / 2 

• Average-case time 
▪ T(N) = T(N/2) + O(N)  
▪ T(N) = O(N) 

• Worst-case time 
▪ T(N) = T(N-1) + O(N) 
▪ T(N) = O(N2)
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!27 Randomized Solution for k-Selection
! Uses RandomizedPartition instead of Partition 

! RandomizedPartition picks the pivot uniformly at 
random from among the elements in the list to be 
partitioned.  

! Randomized k-Selection runs in O(N) time on 
the average 

! Worst-case behavior is very poor O(N2)
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Readings for next class

! Trees,  
! Binary Trees,  
! Binary Search Trees,  
! Balanced Binary Search Trees

9/4/19
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