COT 6405: Analysis of

Algorithms

Giri NARASIMHAN
www.cs fiu.edu/~giri/teach/6405F19.html

http://www.cs.fiu.edu/~giri/teach/5407S19.html

Sorting Algorithms

SelectionSort
InsertionSort
BubbleSort
ShakerSort
MergeSort
HeapSort
QuickSort

Bucket & Radix Sort
Counting Sort

COT 5407 9/4/08

Recurrence; Cond

Solution

T(n) =T(n—-1)4+ 0O(1)

T{n) = O(n)

Tn) =T(n—-1)4+ O(n)

T(n) = O(n?)

'1:(‘1'1,:) — ’_1’(71. =5 (‘:) -+ ()(1)

T(n) = OC(n)

T(n) =T(n—c¢)+ O(n)

T(n) = O{n?)

T(n) =2T(n/2) + O(n)

T(n) =0O(nlogn)

T(n) = a'](w/b) + O(n);

n=h

T(n) = O(nlogn)

T(n) =aT(n/b) + O(n);

a < b

T(n) =0O(n)

T(n) = eT(n/b) + f(n);
f(‘”) = (—)(-n,_logb a—(-)

T(n) =0(n)

T(n) =aT(nfb) + f(n),
F(n) = O(nl0%a)

T(n) = ©(n'°%* logmn)

T(n) =aT(n/b) + f(n),
f(n) =9(f(n))
_q,.,r(-n,/b) i (:_f(:').)

T(n) = Q(n'°%2 logn)

Solving Recurrence Relations

Solving Recurrences: Recursion-tree method

» Substitution method fails when a good guess is not available
» Recursion-tree method works in those cases

Write down the recurrence as a tree with recursive calls as the children
» Expand the children
» Add up each level
=» Sum up the levels

» Useful for analyzing divide-and-conquer algorithms

» Also useful for generating good guesses to be used by substitution
method

COT 5407 1/17/17

COT 5407

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

diul on o
LR g
i
Jaitay
l' 5
l' \I ~
T2y i w2 cafl
[[
DRsA A
I' .\ l' \
J ' .
." .‘h »l' s\l
rprad || Ttm™) Tl Tiu'h
14 (hi 1)
A o L ——— b T
/ I
whifs vpfd s e
) P
" l‘ ‘o \'
) b ¢ 5\
! '\ J' \0
lzn iy \ ¢ \
oH i o Ml sl pu
|) . 1
! b \ AT R
(28 et | R B e
i z
v ¢ < ¢ ¢ - C C o e on
A —
d Torals on lg s + o
Figurs 2.5 Thz constriwn ol @ rawcson e for the maerenzs Tie) = 274092 + o

Part @) shows T inh, which i peopanssirely wxpanded in bi—id) 15 form the recarsinn tree, he
felly expanded tiee i piat (i) Lauc g 4 | Zovels (e L ivhas height 15 . 36 indicated. ard cach beacl
coutritules atodad o o v oo toded cost. thorefars, lg el ga + ow, whichis Himlzul.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tin) on? o’
‘!\ - | -
//i \ /// | \\\
/ 3 N\ e ; .
/ | \ /'/ | \\
T T T = (4)° e (3’ (9
7 VARN /N
/ ; \ / N / \\
TR T3 115 1) AR TUR) T Tig) Tk
(2 b (¢)
\ [V R cnd
/f/ \\\
o T
/'/ \\
:E?(< /(3)" - -23)2 m———— ﬁ('n:
/| 2 I\
7 NG 71N /N
, v AN el
logan J | / 3 Y, ! \,
» a2 " TR u s T 3 a a2 :
('IT;‘), € .‘:En; '('3., (‘(-,;) (‘(I'a) t(ﬁ)' r(f;)' “‘ﬁ". . b ([1-) cnd
: I\ /1 el ! M N
| B NI
A D R R

Y T T TAY T TCD TiD Tad) I['I)) a‘I) ‘1('13 7(1) -r(fg) i G (nVY)

e ——

P — e —-

ey T
'.ly_, 1 R ———— e

) Total: € (n*)

—— Figure 4.8 Ihe comstruction of 5 recursion tree foe the recurrence 7 (1] = I n/4) 1 oenl
Past (@} shows 7 (1), which IS progressivedy expandec m (d)=id) 1o form the recursion tree. The
fuly ecpanded troe in part (d) hus height oy w (it kas oz n 4 1 lovels),

logy2 n

Figure 4.2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cn nuonuuuunuunnnuuuuuuuéll:. C‘n
c(2) (&) . ,
; t% = 3 TR TR T TR | I ch
/ \ fo
/ .
C (g‘) C (%,l) (& (?—(’;") G (%: s fis cn
! | ! \ ’ - ; :
/ \ s \) \ '
' \‘ 'I \. ,, 3 ’ ‘\

Total: O(nlgn)

A recursion tree for the recurrence T (n) — T (n/3) + T (2n/3) 4 cn.

Solving Recurrences using Master
Theorem

Master Theorem:

Let a,b >= 1 be constants, let f(n) be a function, and let
T(n) = aT(n/b) + f(n)
. If f(n) = O(nlog a-¢) for some constant >0, then

» T(n) = Theta(nlog,)

2. If f(n) = Theta(nleg a), then
» T(n) = Theta(nlog, 2 log n)

3. If f(n) = Omega(nlcg a+e) for some constant e>0, then
= T(n) = Theta(f(n))

COT 5407

QuickSort(A, p, 1)
. If (o <r) then
QuickSort a = Partition(A, p, r)
QuickSort(A, p, g-1)
QuickSort(A, g+1, 1)

Partition(A, p, r)
Page 146, CLR X = A[r]
| = p-1
forj=ptor-1do
It A[j] <= x) then
|++
exchange(A[i], A[j])
exchange(A[i+1], Alr])
return i+1

H e O pS O r-l- For the HeapSort analysis, we need to compute:

log n] h

We know from the formula for geometric series that
>k = =
k=0 1-

Differentiating both sides, we get

zk.r"‘ = J),

Multiplying both sides by x we get

ka = l—x)"‘

Analysis

Now replace z = 1/2 to show that

SelectionSort - Worst-case analysis

COT 5407

SELECTIONSORT (array A)

1

D)

Fa

— OO

o'X)

N — length|A|
forp—1to N
do > Compute j

J D
for m «— » + 1 to N
do if |(A|m]| < A[J’])‘

then 7 «— m
[> Swz]_, 8 7 ’p] il l(J A [}]
temp — Alp]
Ap] « Alj]
A J] — lemp

N-p comparisons

3 data movements

Invariant for SelectionSort

= An appropriate invariant has a parameter
related to the progress of the algorithm (e.g.,
iteration number)

= An appropriate invariant helps in proving
algorithm is correct

» “At the end of iteration p, the p smallest items
are in their correct location”

P 5510/ CGS 5166 9/4/19

Algorithm Invariants

Selection Sort
= iteration k: the k smallest items are in correct location.

Insertion Sort
= iteration k: the first k items are in sorted order.

Bubble Sort

= |In each pass, every item that does not have a smaller item
after it, is moved as far up in the list as possible.

= [teration k: k smallest items are in the correct location.

Shaker Sort

= |n each odd (even) numbered pass, every item that does
not have a smaller (larger) item after it, is moved as far up
(down) in the list as possible.

= [teration k: the k/2 smallest and largest items are in the
correct location.

Algorithm Invariants (Cont’'d)

= Merge (many lists)
» |teration k: the k smallest items from the lists are merged.
» Heapify

» |teration with i = k: Subtrees with roots at indices k or larger satisfy the
heap property.

» HeapSort
» |teration k: Largest k items are in the right location.

= Partition (two sublists)

= |teration k (with pointers at i and j): items in locations [1..1] (locations
[i+1..j]) are at least as small (large) as the pivot.

Definition of big-Oh

» We say that
= F(n) = O(G(n))
If there exists two positive constants, ¢ and n,, such that

» For alln 2 n, we have F(n) < c G(n)

* Thus, to show that F(n) = O(G(n)), you need to find two positive constants
that satisfy the condition mentioned above

* Also, to show that F(n) # O(G(n)), you need to show that for any value of
c, there does not exist a positive constant n,that satisfies the condition

mentioned above

COT 5407 1/17/17

Algorithm Analysis

» Worst-case time complexity*®
» Worst possible time of all input instances of length N

(Worst-case) space complexity
» Worst possible spaceof all input instances of length N

» Average-case time complexity
» Average time of all input instances of length N

COT 5407

Computation Tree for A on n inputs

Assume A is a comparison-based sorting alg

» Every node represents a comparison between two
items in A

» Branching based on result of comparison

» |eaf corresponds to algorithm halting with output

= Every input follows a path in tree

» Different inputs follow different paths

» Time complexity on input x = depth of leaf where it

ends on input x

CAP 5510 / CGS 5166 9/4/19

Upper and Lower Bounds

» Time Complexity of a Problem

» Difficulty: Since there can be many algorithms that solve a problem, what time
complexity should we pick?

®» Solution: Define upper bounds and lower bounds within which the time complexity lies.
=~ What is the upper bound on time complexity of sorting?

» Answer: Since SelectionSort runs in worst-case O(N2) and MergeSort runs in O(N log N),
either one works as an upper bound.

» Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e.,
time complexity of the best algorithm.

=» What is the lower bound on fime complexity of sorting?

= Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no
algorithm that sorts N items can run in worst-case time o(f(N)).

COT 5407 1/19/17

Lower Bounds

= |'s possible to prove lower bounds for many comparison-based
problems.

= For comparison-based problems, for inputs of length N, if there are P(N)
possible solutions, then

any algorithm needs IobnggNn to }olve the problem.

Binary Search on a list of N items has at least N + 1 possible solutions.
Hence lower bound is

» |og,(N+1).
= Sorting a list of N items has at least N! possible solutions. Hence lower
bound is
= |og,(N!)=O(N log N)
= Thus, MergeSort is an optimal algorithm.
» Because its worst-case time complexity equals lower bound!

COT 5407 1/19/17

Beating the Lower Bound

= Bucket Sort

Runs in fime O(N+K) given N integers in range [a+1, a+K]
If K= O(N), we are able to sortin O(N)

How is it possible to beat the lower bound?

Only because we know more about the data.

If nothing is know about the data, the lower bound holds.

» Radix Sort

Runs in time O(d(N+K)) given N items with d digits each in range
[1.K]

=» Counting Sort

COT 5407

Runs in time O(N+K) given N items in range [a+1, a+K]

Stable Sort

» A sort is stable if equal elements appear in
the same order in both the input and the
output.

= Which sorts are stable? Homework!

OOOOOOO

Order Statistics

» Maximum, Minimum
» Upper Bound

= O(n) because ??

= We have an algorithm with a single for-loop: n-1 comparisons

Lower Bound RO N kA (X) —

=n-1 comparisons

= MinMax position of x In

» Upper Bound: 2(n-1) comparisons

=» Lower Bound: 3n/2 comparisons S O rTe d O rd e r O

= Max and 2ndMax

®» Upper Bound: (n-1) + (n-2) comparisons

= Lower Bound: Harder to prove

COT 5407 9/30/08

k-Selection: Median

» Select the k-th smallest item in list

Naive Solution
» Sort;
» pick the k-th smallest item in sorted list.
O(n log n) time complexity

» |dea: Modify Partition from QuickSort

» How?
=» Randomized solution: Average case O(n)
» |mproved Solution: worst case O(n)

COT 5407

9/30/08

Using Partition for k-Selection

|

PARTITION(array A.ind p,int r
Y A, P

» Perform Partition from
QuickSort (assume all

l z+— A7 > Choose pivot unique items)

2 1—p-—1 - o

3 for j—ptor—1 y _Fhar;k(plvof) T|1 -Ii-h# of items
1 do it (A5 < 2 at are smaller than pivot
5 then i — i+ 1 = |f Rank(pivot) = k, we are

5 exchange Ali] & Alj] done

—_—

"~

exchange A [i -+ 1] — A['”]

> I -
i iy Else, recursively perform k

Selection in one of the two
partitions

COT 5407 1/26/17

QuickSelect: a variant of QuickSort

QUICKSELECT (array A, int k,int p,int r)

> Select k-th largest in subarray Alp..r]
L|if (p=r1r)
2 then return A[p)
3 q < PARTITION(A, p, 1)
4 2—qg—p+1 > Compute rank of pivot
o |if (i = k)
6 then return Alg]
7 oif (1 > k)
& then return QUICKSELECT(A, k. p, q)
9 else |return QUICKSELECT(A,k —1,q+ 1,7)

k-Selection Time Complexity

» Perform Partition from QuickSort (assume all unique items)

» Rank(pivot) =1 + # of items that are smaller than pivot
= |f Rank(pivot) = k, we are done
-/ Else, recursively perform k-Selection in one of the two partitions

* Onthe average: PARTITION(array A, inl p.inl r)

" Rank(pivot) =n/2 1 x« Alr] > Choose pivot
* Average-case fime 2 te—p-—1

= T(N) =T(N/2) + O(N) 3 forj«ptor—1

= T(N) = O(N) 1
5 then 71 «— 7 + 1
’
7

. Wors’r—ci(]se fime exchangze l:] ¢ 1[1]
= T(N) =T(N-1) + O(N) exchange Afi + 1] & Alr]
= T(N) = O(N2) 8 returni+ 1

Randomized Solution for k-Selection

» UUses RandomizedPartition instead of Partition

» RandomizedPariition picks the pivot uniformly at
random from among the elements in the list o be
partitioned.

» Randomized k-Selection runs in O(N) time on
the average

» Worst-case behavior is very poor O(N2)

Readings for next class

» Trees,
= Binary Trees,
Binary Search Trees,
» Balanced Binary Search Trees

9/4/19

