COT 6405: Analysis of Algorithms
Giri NARASIMHAN

Sorting Algorithms

- SelectionSort
- InsertionSort
- BubbleSort
- ShakerSort
- MergeSort
- HeapSort
- QuickSort
- Bucket & Radix Sort
- Counting Sort
Solving Recurrence Relations

<table>
<thead>
<tr>
<th>Recurrence; Cond</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = T(n-1) + O(1)$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = T(n-1) + O(n)$</td>
<td>$T(n) = O(n^2)$</td>
</tr>
<tr>
<td>$T(n) = T(n-c) + O(1)$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = T(n-c) + O(n)$</td>
<td>$T(n) = O(n^2)$</td>
</tr>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>$T(n) = O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + O(n)$; $a = b$</td>
<td>$T(n) = O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + O(n)$; $a < b$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + f(n)$; $f(n) = O(n^{\log_b a - \epsilon})$</td>
<td>$T(n) = O(n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + f(n)$; $f(n) = O(n^{\log_b a})$</td>
<td>$T(n) = \Theta(n^{\log_b a} \log n)$</td>
</tr>
<tr>
<td>$T(n) = aT(n/b) + f(n)$; $f(n) = \Theta(f(n))$; $af(n/b) \leq cf(n)$</td>
<td>$T(n) = \Omega(n^{\log_b a} \log n)$</td>
</tr>
</tbody>
</table>
Solving Recurrences: Recursion-tree method

- Substitution method fails when a good guess is not available
- Recursion-tree method works in those cases
 - Write down the recurrence as a tree with recursive calls as the children
 - Expand the children
 - Add up each level
 - Sum up the levels
- Useful for analyzing divide-and-conquer algorithms
- Also useful for generating good guesses to be used by substitution method
Figure 2.5 The construction of a recursion tree for the recurrence $T(n) = 2T(n/2) + cn$.
Part (a) shows $T(n)$, which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (c) has $\log n + 1$ levels (i.e., it has height $\log n$, as indicated), and each level contributes a total cost of cn. The total cost, therefore, is $cn \log n + cn$, which is $O(n \log n)$.
Figure 4.4 The construction of a recursion tree for the recurrence $T(n) = 3T(n/2) + cn^2$.
Part (a) shows $T(1)$, which is progressively expanded in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has height $\log_2 n$ (it has $O(\log n)$ levels).
Figure 4.2 A recursion tree for the recurrence $T(n) = T(n/3) + T(2n/3) + cn$.

Total: $O(n \log n)$
Solving Recurrences using Master Theorem

Master Theorem:

Let \(a, b \geq 1 \) be constants, let \(f(n) \) be a function, and let

\[
T(n) = aT\left(\frac{n}{b}\right) + f(n)
\]

1. If \(f(n) = O\left(n^{\log_b a - e}\right) \) for some constant \(e > 0 \), then
 \[
 T(n) = \Theta(n^{\log_b a})
 \]
2. If \(f(n) = \Theta(n^{\log_b a}) \), then
 \[
 T(n) = \Theta(n^{\log_b a \log n})
 \]
3. If \(f(n) = \Omega(n^{\log_b a + e}) \) for some constant \(e > 0 \), then
 \[
 T(n) = \Theta(f(n))
 \]
QuickSort

\[\text{QuickSort}(A, p, r)\]
\[
\begin{align*}
\text{if } (p < r) \text{ then} \\
q &= \text{Partition}(A, p, r) \\
\text{QuickSort}(A, p, q-1) \\
\text{QuickSort}(A, q+1, r)
\end{align*}
\]

\[\text{Partition}(A, p, r)\]
\[
\begin{align*}
x &= A[r] \\
i &= p-1 \\
\text{for } j = p \text{ to } r-1 \text{ do} \\
&\hspace{20pt} \text{if } A[j] \leq x \text{ then} \\
&\hspace{40pt} i++ \\
&\hspace{40pt} \text{exchange}(A[i], A[j])
\end{align*}
\]
\[
\text{exchange}(A[i+1], A[r]) \\
\text{return } i+1
\]
For the HeapSort analysis, we need to compute:

\[
\sum_{h=0}^{[\log n]} \frac{h}{2^h}
\]

We know from the formula for geometric series that

\[
\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}
\]

Differentiating both sides, we get

\[
\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}
\]

Multiplying both sides by \(x\) we get

\[
\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}
\]

Now replace \(x = 1/2\) to show that

\[
\sum_{h=0}^{[\log n]} \frac{h}{2^h} \leq \frac{1}{2}
\]
SelectionSort – Worst-case analysis

SelectionSort (array A)

1. \(N \leftarrow \text{length}[A] \)
2. \(\text{for } p \leftarrow 1 \text{ to } N \)
 \(\text{do } > \text{ Compute } j \)
3. \(j \leftarrow p \)
4. \(\text{for } m \leftarrow p + 1 \text{ to } N \)
 \(\text{do if } (A[m] < A[j]) \)
 \(\text{then } j \leftarrow m \)
5. \(> \text{ Swap } A[p] \text{ and } A[j] \)
6. \(\text{temp } \leftarrow A[p] \)
8. \(A[j] \leftarrow \text{temp} \)

N-p comparisons

3 data movements
Invariant for SelectionSort

- An appropriate invariant has a parameter related to the progress of the algorithm (e.g., iteration number)
- An appropriate invariant helps in proving algorithm is correct
- "At the end of iteration p, the p smallest items are in their correct location"
Algorithm Invariants

- **Selection Sort**
 - iteration k: the k smallest items are in correct location.

- **Insertion Sort**
 - iteration k: the first k items are in sorted order.

- **Bubble Sort**
 - In each pass, every item that does not have a smaller item after it, is moved as far up in the list as possible.
 - Iteration k: k smallest items are in the correct location.

- **Shaker Sort**
 - In each odd (even) numbered pass, every item that does not have a smaller (larger) item after it, is moved as far up (down) in the list as possible.
 - Iteration k: the $k/2$ smallest and largest items are in the correct location.
Algorithm Invariants (Cont’d)

- **Merge** (many lists)
 - Iteration k: the k smallest items from the lists are merged.

- **Heapify**
 - Iteration with i = k: Subtrees with roots at indices k or larger satisfy the heap property.

- **HeapSort**
 - Iteration k: Largest k items are in the right location.

- **Partition** (two sublists)
 - Iteration k (with pointers at i and j): items in locations [1..I] (locations [i+1..j]) are at least as small (large) as the pivot.
Definition of big-Oh

- We say that

 \[F(n) = O(G(n)) \]

 If there exists two positive constants, \(c \) and \(n_0 \), such that

 For all \(n \geq n_0 \), we have \(F(n) \leq c \cdot G(n) \)

 • Thus, to show that \(F(n) = O(G(n)) \), you need to find two positive constants that satisfy the condition mentioned above

 • Also, to show that \(F(n) \neq O(G(n)) \), you need to show that for any value of \(c \), there does not exist a positive constant \(n_0 \) that satisfies the condition mentioned above
Algorithm Analysis

- **Worst-case time complexity***
 - Worst possible time of all input instances of length N
- **(Worst-case) space complexity**
 - Worst possible space of all input instances of length N
- **Average-case time complexity**
 - Average time of all input instances of length N
Computation Tree for A on n inputs

- Assume A is a comparison-based sorting alg
- Every node represents a comparison between two items in A
- Branching based on result of comparison
- Leaf corresponds to algorithm halting with output
- Every input follows a path in tree
- Different inputs follow different paths
- Time complexity on input \(x \) = depth of leaf where it ends on input \(x \)
Upper and Lower Bounds

- **Time Complexity of a Problem**
 - **Difficulty**: Since there can be many algorithms that solve a problem, what time complexity should we pick?
 - **Solution**: Define upper bounds and lower bounds within which the time complexity lies.

- **What is the upper bound on time complexity of sorting?**
 - **Answer**: Since SelectionSort runs in worst-case $O(N^2)$ and MergeSort runs in $O(N \log N)$, either one works as an upper bound.
 - **Critical Point**: Among all upper bounds, the best is the lowest possible upper bound, i.e., time complexity of the best algorithm.

- **What is the lower bound on time complexity of sorting?**
 - **Difficulty**: If we claim that lower bound is $O(f(N))$, then we have to prove that no algorithm that sorts N items can run in worst-case time $o(f(N))$.

Lower Bounds

- It’s possible to prove lower bounds for many comparison-based problems.
- For comparison-based problems, for inputs of length N, if there are $P(N)$ possible solutions, then
 - any algorithm needs $\log_2(P(N))$ to solve the problem.
- Binary Search on a list of N items has at least $N + 1$ possible solutions. Hence lower bound is
 - $\log_2(N+1)$.
- Sorting a list of N items has at least $N!$ possible solutions. Hence lower bound is
 - $\log_2(N!) = O(N \log N)$
- Thus, MergeSort is an optimal algorithm.
 - Because its worst-case time complexity equals lower bound!
Beating the Lower Bound

- **Bucket Sort**
 - Runs in time $O(N+K)$ given N integers in range $[a+1, a+K]$
 - If $K = O(N)$, we are able to sort in $O(N)$
 - How is it possible to beat the lower bound?
 - Only because we know more about the data.
 - If nothing is know about the data, the lower bound holds.

- **Radix Sort**
 - Runs in time $O(d(N+K))$ given N items with d digits each in range $[1,K]$

- **Counting Sort**
 - Runs in time $O(N+K)$ given N items in range $[a+1, a+K]$
Stable Sort

- A sort is **stable** if equal elements appear in the same order in both the input and the output.
- Which sorts are stable? Homework!
Order Statistics

- Maximum, Minimum
 - Upper Bound
 - $O(n)$ because ??
 - We have an algorithm with a single for-loop: $n-1$ comparisons
 - Lower Bound
 - $n-1$ comparisons

- MinMax
 - Upper Bound: $2(n-1)$ comparisons
 - Lower Bound: $3n/2$ comparisons

- Max and 2ndMax
 - Upper Bound: $(n-1) + (n-2)$ comparisons
 - Lower Bound: Harder to prove
k-Selection; Median

- Select the k-th smallest item in list

Naïve Solution
- Sort;
- pick the k-th smallest item in sorted list.
 \[O(n \log n) \] time complexity

Idea: Modify Partition from QuickSort
- How?
- Randomized solution: Average case $O(n)$
- Improved Solution: worst case $O(n)$
Using Partition for k-Selection

- Perform Partition from QuickSort (assume all unique items)
 - \textbf{Rank}(\text{pivot}) = 1 + \# of items that are smaller than pivot
 - If \textbf{Rank}(\text{pivot}) = k, we are done
 - Else, recursively perform k-Selection in one of the two partitions

```plaintext
PARTITION(array A, int p, int r)
1  x ← A[r]  ▷ Choose pivot
2  i ← p - 1
3  for j ← p to r - 1
4      do if (A[j] ≤ x)
5          then i ← i + 1
7  exchange A[i + 1] ↔ A[r]
8  return i + 1
```
QuickSelect: a variant of QuickSort

\begin{algorithm}
\texttt{QuickSelect}(array A, int k, int p, int r) \\
\hspace{1em} \triangleright Select k-th largest in subarray $A[p..r]$ \\
1. \textbf{if} ($p = r$) \\
2. \hspace{1em} \textbf{then return} $A[p]$ \\
3. \hspace{1em} $q \leftarrow \text{PARTITION}(A, p, r)$ \\
4. \hspace{1em} $i \leftarrow q - p + 1$ \triangleright Compute rank of pivot \\
5. \textbf{if} ($i = k$) \\
6. \hspace{1em} \textbf{then return} $A[q]$ \\
7. \textbf{if} ($i > k$) \\
8. \hspace{1em} \textbf{then return} \texttt{QuickSelect}(A, k, p, q) \\
9. \hspace{1em} \textbf{else return} \texttt{QuickSelect}(A, $k - i$, $q + 1$, r)
\end{algorithm}
k-Selection Time Complexity

- Perform Partition from QuickSort (assume all unique items)
- \[\text{Rank}(\text{pivot}) = 1 + \# \text{ of items that are smaller than pivot} \]
- If \[\text{Rank}(\text{pivot}) = k \], we are done
- Else, recursively perform k-Selection in one of the two partitions

- On the average:
 - \[\text{Rank}(\text{pivot}) = n / 2 \]
- Average-case time
 - \[T(N) = T(N/2) + O(N) \]
 - \[T(N) = O(N) \]
- Worst-case time
 - \[T(N) = T(N-1) + O(N) \]
 - \[T(N) = O(N^2) \]
Randomized Solution for k-Selection

- Uses `RandomizedPartition` instead of `Partition`
 - `RandomizedPartition` picks the pivot uniformly at random from among the elements in the list to be partitioned.
- Randomized k-Selection runs in $O(N)$ time on the average
- Worst-case behavior is very poor $O(N^2)$
Readings for next class

- Trees,
- Binary Trees,
- Binary Search Trees,
- Balanced Binary Search Trees