
CAP 5510 / CGS 5166

COT 6405: Analysis of
Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html
9/4/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

COT 5407 9/4/08

!2 Sorting Algorithms

! SelectionSort
! InsertionSort
! BubbleSort
! ShakerSort
! MergeSort
! HeapSort
! QuickSort
! Bucket & Radix Sort
! Counting Sort

COT 5407

Solving Recurrence Relations

1/17/17

!3

COT 5407 1/17/17

!4 Solving Recurrences: Recursion-tree method

! Substitution method fails when a good guess is not available
! Recursion-tree method works in those cases

! Write down the recurrence as a tree with recursive calls as the children
! Expand the children
! Add up each level
! Sum up the levels

! Useful for analyzing divide-and-conquer algorithms
! Also useful for generating good guesses to be used by substitution

method

COT 5407 1/17/17

!5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COT 5407 1/17/17

!6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COT 5407 1/17/17

!7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

COT 5407 1/17/17

!8 Solving Recurrences using Master
Theorem
Master Theorem:
 Let a,b >= 1 be constants, let f(n) be a function, and let
 T(n) = aT(n/b) + f(n)
1. If f(n) = O(nlog

b
a-e) for some constant e>0, then

! T(n) = Theta(nlog
b

a)

2. If f(n) = Theta(nlog
b

a), then
! T(n) = Theta(nlog

b
a log n)

3. If f(n) = Omega(nlog
b

a+e) for some constant e>0, then
! T(n) = Theta(f(n))

CAP 5510 / CGS 5166

QuickSort

9/4/19

!9

QuickSort(A, p, r)
 if (p < r) then
 q = Partition(A, p, r)
 QuickSort(A, p, q-1)
 QuickSort(A, q+1, r)

Partition(A, p, r)
 x = A[r]
 i = p-1
 for j = p to r-1 do
 if A[j] <= x) then
 i++
 exchange(A[i], A[j])
exchange(A[i+1], A[r])
return i+1

Page 146, CLR

!10 HeapSort
Analysis

COT 5407 1/17/17

!11 SelectionSort – Worst-case analysis

N-p comparisons

3 data movements

CAP 5510 / CGS 5166

Invariant for SelectionSort

! An appropriate invariant has a parameter
related to the progress of the algorithm (e.g.,
iteration number)

! An appropriate invariant helps in proving
algorithm is correct

! “At the end of iteration p, the p smallest items
are in their correct location”

9/4/19

!12

!13 Algorithm Invariants
! Selection Sort

! iteration k: the k smallest items are in correct location.
! Insertion Sort

! iteration k: the first k items are in sorted order.

! Bubble Sort
! In each pass, every item that does not have a smaller item

after it, is moved as far up in the list as possible.
! Iteration k: k smallest items are in the correct location.

! Shaker Sort
! In each odd (even) numbered pass, every item that does

not have a smaller (larger) item after it, is moved as far up
(down) in the list as possible.

! Iteration k: the k/2 smallest and largest items are in the
correct location.

!14 Algorithm Invariants (Cont’d)

! Merge (many lists)
! Iteration k: the k smallest items from the lists are merged.

! Heapify
! Iteration with i = k: Subtrees with roots at indices k or larger satisfy the

heap property.
! HeapSort

! Iteration k: Largest k items are in the right location.
! Partition (two sublists)

! Iteration k (with pointers at i and j): items in locations [1..I] (locations
[i+1..j]) are at least as small (large) as the pivot.

COT 5407

Definition of big-Oh

! We say that
! F(n) = O(G(n))

 If there exists two positive constants, c and n0, such that
! For all n ≥ n0, we have F(n) ≤ c G(n)

• Thus, to show that F(n) = O(G(n)), you need to find two positive constants
that satisfy the condition mentioned above

• Also, to show that F(n) ≠ O(G(n)), you need to show that for any value of
c, there does not exist a positive constant n0 that satisfies the condition
mentioned above

1/17/17

!15

COT 5407 1/19/17

!16 Algorithm Analysis

! Worst-case time complexity*
! Worst possible time of all input instances of length N

! (Worst-case) space complexity
! Worst possible spaceof all input instances of length N

! Average-case time complexity
! Average time of all input instances of length N

CAP 5510 / CGS 5166

Computation Tree for A on n inputs
! Assume A is a comparison-based sorting alg
! Every node represents a comparison between two

items in A
! Branching based on result of comparison
! Leaf corresponds to algorithm halting with output
! Every input follows a path in tree
! Different inputs follow different paths
! Time complexity on input x = depth of leaf where it

ends on input x

9/4/19

!17

COT 5407

Upper and Lower Bounds
! Time Complexity of a Problem

! Difficulty: Since there can be many algorithms that solve a problem, what time
complexity should we pick?

! Solution: Define upper bounds and lower bounds within which the time complexity lies.
! What is the upper bound on time complexity of sorting?

! Answer: Since SelectionSort runs in worst-case O(N2) and MergeSort runs in O(N log N),
either one works as an upper bound.

! Critical Point: Among all upper bounds, the best is the lowest possible upper bound, i.e.,
time complexity of the best algorithm.

! What is the lower bound on time complexity of sorting?
! Difficulty: If we claim that lower bound is O(f(N)), then we have to prove that no

algorithm that sorts N items can run in worst-case time o(f(N)).

1/19/17

!18

COT 5407

Lower Bounds
! It’s possible to prove lower bounds for many comparison-based

problems.
! For comparison-based problems, for inputs of length N, if there are P(N)

possible solutions, then
! any algorithm needs log2(P(N)) to solve the problem.

! Binary Search on a list of N items has at least N + 1 possible solutions.
Hence lower bound is
! log2(N+1).

! Sorting a list of N items has at least N! possible solutions. Hence lower
bound is
! log2(N!) = O(N log N)

! Thus, MergeSort is an optimal algorithm.
! Because its worst-case time complexity equals lower bound!

1/19/17

!19

COT 5407

Beating the Lower Bound
! Bucket Sort

! Runs in time O(N+K) given N integers in range [a+1, a+K]
! If K = O(N), we are able to sort in O(N)
! How is it possible to beat the lower bound?
! Only because we know more about the data.
! If nothing is know about the data, the lower bound holds.

! Radix Sort
! Runs in time O(d(N+K)) given N items with d digits each in range

[1,K]
! Counting Sort

! Runs in time O(N+K) given N items in range [a+1, a+K]

1/19/17

!20

COT 5407 1/19/17

!21 Stable Sort

! A sort is stable if equal elements appear in
the same order in both the input and the
output.

! Which sorts are stable? Homework!

COT 5407 9/30/08

!22 Order Statistics
! Maximum, Minimum

! Upper Bound
! O(n) because ??
! We have an algorithm with a single for-loop: n-1 comparisons

! Lower Bound
!n-1 comparisons

! MinMax
! Upper Bound: 2(n-1) comparisons
! Lower Bound: 3n/2 comparisons

! Max and 2ndMax
! Upper Bound: (n-1) + (n-2) comparisons
! Lower Bound: Harder to prove

7 3 1 9 4 8 2 5 0

RankA(x) =
position of x in
sorted order of A

COT 5407 9/30/08

!23 k-Selection; Median
! Select the k-th smallest item in list
! Naïve Solution

! Sort;
! pick the k-th smallest item in sorted list.
 O(n log n) time complexity

! Idea: Modify Partition from QuickSort
! How?

! Randomized solution: Average case O(n)
! Improved Solution: worst case O(n)

COT 5407

Using Partition for k-Selection

! Perform Partition from
QuickSort (assume all
unique items)

! Rank(pivot) = 1 + # of items
that are smaller than pivot

! If Rank(pivot) = k, we are
done

! Else, recursively perform k-
Selection in one of the two
partitions

1/26/17

!24

COT 5407 9/30/08

!25 QuickSelect: a variant of QuickSort

COT 5407

k-Selection Time Complexity
! Perform Partition from QuickSort (assume all unique items)
! Rank(pivot) = 1 + # of items that are smaller than pivot
! If Rank(pivot) = k, we are done
! Else, recursively perform k-Selection in one of the two partitions

1/26/17

!26

• On the average:
▪ Rank(pivot) = n / 2

• Average-case time
▪ T(N) = T(N/2) + O(N)
▪ T(N) = O(N)

• Worst-case time
▪ T(N) = T(N-1) + O(N)
▪ T(N) = O(N2)

COT 5407 9/30/08

!27 Randomized Solution for k-Selection
! Uses RandomizedPartition instead of Partition

! RandomizedPartition picks the pivot uniformly at
random from among the elements in the list to be
partitioned.

! Randomized k-Selection runs in O(N) time on
the average

! Worst-case behavior is very poor O(N2)

CAP 5510 / CGS 5166

Readings for next class

! Trees,
! Binary Trees,
! Binary Search Trees,
! Balanced Binary Search Trees

9/4/19

!28

