
CAP 5510 / CGS 5166

COT 6405: Analysis of
Algorithms
Giri NARASIMHAN

www.cs.fiu.edu/~giri/teach/6405F19.html
9/15/19

!1

http://www.cs.fiu.edu/~giri/teach/5407S19.html

COT 5407 1/31/17

!2 Data Structure Evolution

! Standard operations on data structures
! Search
! Insert
! Delete

! Linear Lists
! Implementation: Arrays (Unsorted and Sorted)

! Dynamic Linear Lists
! Implementation: Linked Lists

! Dynamic Trees
! Implementation: Binary Search Trees

Common Data Structures
Search Insert Delete Comments

Unsorted Arrays O(N) O(1) O(N)

Sorted Arrays O(log N) O(N) O(N)

Unsorted Linked
Lists O(N) O(1) O(N)

Sorted Linked Lists O(N) O(N) O(N)

Binary Search Trees O(H) O(H) O(H) H = O(N)

Balanced BSTs O(log N) O(log N) O(log N) As H = O(log N)

COT 5407

Animations

! https://www.cs.usfca.edu/~galles/visualization/
Algorithms.html

! https://visualgo.net/
! http://www.cs.armstrong.edu/liang/animation/

animation.html
! http://www.cs.jhu.edu/~goodrich/dsa/trees/
! https://www.youtube.com/watch?v=Y-5ZodPvhmM
! http://www.algoanim.ide.sk/

2/2/17

!4

COT 5407 2/2/17

!5 Red-Black (RB) Trees

! Every node in a red-black tree is colored either red or black.
! The root is always black.
! Every path on the tree, from the root down to the leaf, has the

same number of black nodes.
! No red node has a red child.
! Every NIL pointer points to a special node called NIL[T] and is

colored black.
! Every RB-Tree with n nodes has black height at most logn
! Every RB-Tree with n nodes has height at most 2logn

COT 5407 2/2/17

!6
Red-Black Tree Insert

RB-Insert (T,z) // pg 315
 // Insert node z in tree T
 y = NIL[T]
 x = root[T]
 while (x ≠ NIL[T]) do
 y = x
 if (key[z] < key[x])
 x = left[x]
 x = right[x]
 p[z] = y
 if (y == NIL[T])
 root[T] = z
 else if (key[z] < key[y])
 left[y] = z
 else right[y] = z
 // new stuff
 left[z] = NIL[T]
 right[z] = NIL[T]
 color[z] = RED
 RB-Insert-Fixup (T,z)

RB-Insert-Fixup (T,z)
 while (color[p[z]] == RED) do
 if (p[z] = left[p[p[z]]]) then
 y = right[p[p[z]]]
 if (color[y] == RED) then // C-1
 color[p[z]] = BLACK
 color[y] = BLACK
 z = p[p[z]]
 color[z] = RED
 else if (z == right[p[z]]) then // C-2
 z = p[z]
 LeftRotate(T,z)
 color[p[z]] = BLACK // C-3
 color[p[p[z]]] = RED
 RightRotate(T,p[p[z]])
 else
 // Symmetric code: “right” ↔ “left”
 • • •
 color[root[T]] = BLACK

COT 5407

Case 1: Non-elbow; sibling of parent (y)
red

2/2/17

!7

COT 5407

Case 2: Elbow case

2/2/17

!8

COT 5407

Case 3: Non-elbow; sibling of parent
black

2/2/17

!9

COT 5407 2/2/17

!10 Rotations
LeftRotate(T,x) // pg 278
 // right child of x becomes x’s parent.
 // Subtrees need to be readjusted.
 y = right[x]
 right[x] = left[y] // y’s left subtree becomes x’s right
 p[left[y]] = x
 p[y] = p[x]
 if (p[x] == NIL[T]) then
 root[T] = y
 else if (x == left[p[x]]) then
 left[p[x]] = y
 else right[p[x]] = y
 left[y] = x
 p[x] = y

More Dynamic Operations

Se/In/De Rank Select Comments

Balanced BSTs O(log N) O(N) O(N)

Augmented BBSTs O(log N) O(log N) O(log N)

Search Insert Delete Comments

Unsorted Arrays O(N) O(1) O(N)

Sorted Arrays O(log N) O(N) O(N)

Unsorted Linked
Lists O(N) O(1) O(N)

Sorted Linked Lists O(N) O(N) O(N)

Binary Search Trees O(H) O(H) O(H) H = O(N)

Balanced BSTs O(log N) O(log N) O(log N) As H = O(log N)

COT 5407 2/2/17

!12 Operations on Dynamic RB Trees

! K-Selection
! Select an item with a specified rank

! “Efficient” solution not possible without preprocessing
! Preprocessing - store additional information at nodes
! Inverse of K-Selection

! Find rank of an item in the tree
! What information should be stored?

! Rank
! ??

COT 5407 2/2/17

!13 OS-Rank
OS-RANK(x,y)
// Different from text (recursive version)
// Find the rank of x in the subtree rooted at y
1 r = size[left[y]] + 1
2 if x = y then return r
3 else if (key[x] < key[y]) then
4 return OS-RANK(x,left[y])
5 else return r + OS-RANK(x,right[y])

Time Complexity O(log n)

COT 5407 2/2/17

!14 OS-Select

OS-SELECT(x,i) //page 304
// Select the node with rank i
// in the subtree rooted at x
1. r = size[left[x]]+1
2. if i = r then
3. return x
4. elseif i < r then
5. return OS-SELECT (left[x], i)
6. else return OS-SELECT (right[x], i-r)

Time Complexity O(log n)

COT 5407 2/2/17

!15 RB-Tree Augmentation

! Augment x with Size(x), where
! Size(x) = size of subtree rooted at x
! Size(NIL) = 0

COT 5407 2/2/17

!16 Augmented Data Structures
! Why is it needed?

! Because basic data structures not enough for all operations
! storing extra information helps execute special operations more efficiently.

! Can any data structure be augmented?
! Yes. Any data structure can be augmented.

! Can a data structure be augmented with any additional information?
! Theoretically, yes.

! How to choose which additional information to store.
! Only if we can maintain the additional information efficiently under all operations. That

means, with additional information, we need to perform old and new operations
efficiently maintain the additional information efficiently.

COT 5407 2/2/17

!17 How to augment data structures

1. choose an underlying data structure
2. determine additional information to be

maintained in the underlying data structure,
3. develop new operations,
4. verify that the additional information can be

maintained for the modifying operations on
the underlying data structure.

COT 5407 2/2/17

!18 Augmenting RB-Trees
Theorem 14.1, page 309
 Let f be a field that augments a red-black tree T with n nodes,

and f(x) can be computed using only the information in
nodes x, left[x], and right[x], including f[left[x]] and f[right[x]].

 Then, we can maintain f(x) during insertion and deletion
without asymptotically affecting the O(log n) performance of
these operations.

For example,
 size[x] = size[left[x]] + size[right[x]] + 1
 rank[x] = ?

COT 5407 2/2/17

!19 Augmenting information for RB-Trees

! Parent
! Height
! Any associative function on all previous

values or all succeeding values.
! Next
! Previous

CAP 5510 / CGS 5166

Reading for next class

! Red Black Trees
! Properties
! Invariants
! Insert and Delete

! Mathematical Induction

9/15/19

!20

