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Dictionaries
Definition
A dictionary is a collection of elements; each of which has a unique search
key.

Uniqueness criteria may be relaxed (multi-set).
Do not force uniqueness.

Purpose
Dictionaries keep track of current members, with periodic insertions and
deletions into the set (similar to a database).

Examples
Membership in a club.
Course records.
Symbol table (with duplicates).
Language dictionary (Webster, RAE, Oxford).
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Example: Course records

Dictionary with member records
key ID Student Name HW1
123 Stan Smith 49 · · ·
125 Sue Margolin 45 · · ·
128 Billie King 24 · · ·

...

...
190 Roy Miller 36 · · ·
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The dictionary ADT operations

Some operations on dictionaries
size(): Returns the size of the dictionary.
empty(): Returns TRUE if the dictionary is empty.
findItem(key): Locates the item with the specified key.
findAllItems(key): Locates all items with the specified key.
removeItem(key): Removes the item with the specified key.
removeAllItems(key): Removes all items with the specified key.
insertItem(key,element): Inserts a new key-element pair.
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Example of unordered dictionary

Example
Consider an empty unordered dictionary, we have then...

Operation Dictionary Output
InsertItem(5, A) {(5, A)}
InsertItem(7, B) {(5, A) , (7, B)}
findItem(7) {(5, A) , (7, B)} B
findItem(4) {(5, A) , (7, B)} No Such Key

size() {(5, A) , (7, B)} 2
removeItem(5) {(7, B)} A
findItem(4) {(7, B)} No Such Key
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How to implement a dictionary?

There are many ways of implementing a dictionary
Sequences / Arrays

I Ordered
I Unordered

Binary search trees
Skip lists
Hash tables
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Recall Arrays...

Unordered array

Complexity
Searching and removing takes O(n).
Inserting takes O(1).

Applications
This approach is good for log files where insertions are frequent but
searches and removals are rare.
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More Arrays

Ordered array

Complexity
Searching takes O(log n) time (binary search).
Insert and removing takes O(n) time.

Applications
This aproach is good for look-up tables where searches are frequent but
insertions and removals are rare.
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Binary searches

Features
Narrow down the search range in stages
“High-low” game.
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Binary searches

Example find Element(22)
2 4 5 7 8 9 12 14 17 19 22 25 27 28 33

↑
LOW

↑
MID
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↑
LOW=MID=HIGH
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Recall binary search trees

Implement a dictionary with a BST
A binary search tree is a binary tree T such that:

Each internal node stores an item (k, e) of a dictionary.
Keys stored at nodes in the left subtree of v are less than or equal to
k.
Keys stored at nodes in the right subtree of v are greater than or
equal to k.
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Binary searches Trees

Problem!!! Keeping a Well Balanced Binary Search Tree can be
difficult!!!

44

17 88

65

54 82

76

80

32

28

29

97
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Not only that...

Binary Search Trees
They are not so well suited for parallel environments.

I Unless a heavy modifications are done

In addition
We want to have a

Compact Data Structure.
Using as little memory as possible
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Thus, we have the following possibilities

Unordered array complexities
Insertion: O(1)
Search: O(n)

Ordered array complexities
Insertion: O(n)
Search: O(n log n)

Well balanced binary trees complexities
Insertion: O(log n)
Search: O(log n)

Big Drawback - Complex parallel Implementation and waste of
memory.
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We want something better!!!

For this
We will present a probabilistic data structure known as Skip
List!!!
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Starting from Scratch

First
Imagine that you only require to have searches.
A first approximation to it is the use of a link list for it (Θ(n) search
complexity).
Then, using this How do we speed up searches?

Something Notable
Use two link list, one a subsequence of the other.

Imagine the two lists as a road system
1 The Bottom is the normal road system, L2.
2 The Top is the high way system, L1.
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Example

High-Bottom Way System
14

14 23 34 42 47 63

34 42
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Thus, we have...

The following rule
To Search first search in the top one (L1) as far as possible, then go
down and search in the bottom one (L2).

24 / 99



We can use a little bit of optimization

We have the following worst cost
Search Cost High-Bottom Way System = Cost Searching Top +...

Cost Search Bottom

Or

Search Cost =length (L1) + Cost Search Bottom

The interesting part is “Cost Search Bottom”
This can be calculated by the following quotient:

length (L2)
length (L1)
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Why?

If we think we are jumping

Segment 1 Segment 2

14

14 23 34

34

26 30

26

Then cost of searching each of the bottom segments = 2
Thus the ratio is a “decent” approximation to the worst case search

length (L2)
length (L1) = 5

3 = 1.66
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Thus, we have...

Then, the cost for a search (when length (L2) = n)

Search Cost = length (L1)+ length (L2)
length (L1) = length (L1)+ n

length (L1) (1)

Taking the derivative with respect to length (L1) and making the
result equal 0

1− n
length2 (L1) = 0
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Final Cost

We have that the optimal length for L1

length (L1) =
√

n

Plugging back in (Eq. 1)

Search Cost =
√

n + n√
n =

√
n +
√

n = 2×
√

n
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Data structure with a Square Root Relation

Something like this
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Now
For a three layer link list data structure

We get a search cost of 3× 3
√

n

In general for k layers, we have

k × k√n

Thus, if we make k = log2 n, we get

Search Cost = log2 n × log2 n√n

= log2 n × (n)1/log2 n

= log2 n × (n)logn 2

= log2 n × 2
=Θ (log2 n)
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Thus

Something Notable
We get the advantages of the binary search trees with a simpler
architecture!!!
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Thus

Binary Search Trees
44

17 88

65

54 82

76

80

32

28

29

97

New Architecture
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Now

We are ready to give a
Definition for Skip List
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A Little Bit of History

Skip List
They were invented by William Worthington "Bill" Pugh Jr.!!!

How is him?
He is is an American computer scientist who invented the skip list and
the Omega test for deciding Presburger arithmetic.
He was the co-author of the static code analysis tool FindBugs.
He was highly influential in the development of the current memory
model of the Java language together with his PhD student Jeremy
Manson.
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Skip List Definition

Definition
A skip list for a set S of distinct (key,element) items is a series of lists
S0, S1, ..., Sh such that:

Each list Si contains the special keys +∞ and −∞
List S0 contains the keys of S in nondecreasing order
Each list is a subsequence of the previous one

I S0 ⊇ S1 ⊇ S2 ⊇ ... ⊇ Sh

List Sh contains only the two special keys
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Skip List Definition

Example
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Skip list search

We search for a key x in a skip list as follows
We start at the first position of the top list.
At the current position p, we compare x with y == p.next.key

I x == y: we return p.next.element
I x > y: we scan forward
I x < y: we “drop down”

If we try to drop down past the bottom list, we return null.
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Example search for 78

x < p.next.key: “drop down”
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Example search for 78

x > p.next.key: “scan forward”
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Example search for 78

x < p.next.key: “drop down”
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Example search for 78

x == y: we return p.next.element

12

23

23 26

31

31

31 34-

-

-

-

+

+

+

+

34

44 56 64

64

78
p

45 / 99



Outline
1 Dictionaries

Definitions
Dictionary operations
Dictionary implementation

2 Skip Lists
Why Skip Lists?
The Idea Behind All of It!!!
Skip List Definition
Skip list implementation
Insertion for Skip Lists
Deletion in Skip Lists
Properties
Search and Insertion Times
Applications
Summary

46 / 99



How do we implement this data structure?

We can implement a skip list with quad-nodes
A quad-node stores:

Entry Value

Link to the previous node

Link to the next node

Link to the above node

Link to the below node
Also we define special keys PLUS_INF and MINUS_INF, and we modify the key
comparator to handle them.
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Example

Quad-Node Example
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Skip lists uses Randomization

Use of randomization
We use a randomized algorithm to insert items into a skip list.

Running time
We analyze the expected running time of a randomized algorithm under
the following assumptions:

The coins are unbiased.
The coin tosses are independent.

Worst case running time
The worst case running time of a randomized algorithm is often large but
has very low probability.

e.g. It occurs when all the coin tosses give “heads.”
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Insertion

To insert
To insert an entry (key, object) into a skip list, we use a randomized algorithm:

We repeatedly toss a coin until we get tails:
I We denote with i the number of times the coin came up heads.

If i ≥ h, we add to the skip list new lists Sh+1, ..., Si+1:
I Each containing only the two special keys.

We search for x in the skip list and find the positions p0, p1, ..., pi of the items
with largest key less than x in each lists S0, S1, ..., Si .

For j ← 0, ..., i, we insert item (key, object) into list Sj after position pj .
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Example: Insertion of 15 in the skip list

First, we use i = 2 to insert S3 into the skip list
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Example: Insertion of 15 in the skip list

Clearly, you first search for the predecessor key!!!
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Example: Insertion of 15 in the skip list

Insert the necessary Quad-Nodes and necessary information
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Example: Insertion of 15 in the skip list

Finally!!!
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Deletion

To remove an entry with key x from a skip list, we proceed as follows
We search for x in the skip list and find the positions p0, p1, ..., pi of
the items with key x, where position pj is in list Sj .
We remove positions p0, p1, ..., pi from the lists S0, S1, ..., Si .
We remove all but one list containing only the two special keys
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Example: Delete of 34 in the skip list

We search for 34 in the skip list and find the positions p0, p1, ..., p2 of
the items with key 34
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Example: Delete of 34 in the skip list

We start doing the deletion!!!
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Example: Delete of 34 in the skip list

One Quad-Node after another
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Example: Delete of 34 in the skip list

One Quad-Node after another
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Example: Delete of 34 in the skip list

Remove One Level
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Space usage

Space usage
The space used by a skip list depends on the random bits used by each
invocation of the insertion algorithm.
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Space : O (n)
Theorem
The expected space usage of a skip list with n items is O(n).

Proof
We use the following two basic probabilistic facts:

1 Fact 1: The probability of getting i consecutive heads when flipping a
coin is 1

2i .
2 Fact 2: If each of n entries is present in a set with probability p, the

expected size of the set is np.
1 How? Remember X = X1 + X2 + ... + Xn where Xi is an indicator

function for event Ai = the i element is present in the set. Thus:

E [X ] =
n∑

i=1
E [Xi ] =

n∑
i=1

Pr {Ai}︸ ︷︷ ︸
Equivalence E[XA] and Pr{A}

=
n∑

i=1
p = np
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Proof

Now consider a skip list with n entries
Using Fact 1, an element is inserted in list Si with a probability of

1
2i

Now by Fact 2
The expected size of list Si is

n
2i
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Proof

The expected number of nodes used by the skip list with height h

h∑
i=0

n
2i = n

h∑
i=0

1
2i

Here, we have a problem!!! What is the value of h?
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Height h

First
The running time of the search and insertion algorithms is affected by the
height h of the skip list.

Second
We show that with high probability, a skip list with n items has height
O(log n).
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For this, we have the following fact!!!

We use the following Fact 3
We can view the level l (xi) = max {j|where xi ∈ Sj} of the elements in
the skip list as the following random variable

Xi = l (xi)

for each element xi in the skip list.

And this is a random variable!!!
Remember the insertions!!! Using an unbiased coin!!
Thus, all Xi have a geometric distribution.
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Example for l (xi)

We have
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1 2 3 1
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BTW What is the geometric distribution?

k failures where

k = {1, 2, 3, ...}

Probability mass function

Pr (X = k) = (1− p)k−1 p
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Probability Mass Function
For Different Probabilities
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Then

We have the following inequality for the geometric variables

Pr [Xi > t] ≤ (1− p)t ∀i = 1, 2, ..., n

Because if the cdf F (t) = P (X ≤ t) = 1− (1− p)t+1

Then, we have

Pr
{

max
i

Xi > t
}
≤ n(1− p)t

This comes from Fmaxi Xi (t) = (F (t))n
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Observations

The maxi Xi

It represents the list with the one entry apart from the special keys.

-

-

-

12

-

23

23 45 +

+

+

+

34

34

34

78 / 99



Observations

REMEMBER!!!
We are talking about a fair coin, thus p = 1

2 .
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Height: 3 log2 n with probability at least 1− 1
n2

Theorem
A skip list with n entries has height at most 3 log2 n with probability at
least 1− 1

n2
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Proof

Consider a skip list with n entires
By Fact 3, the probability that list St has at least one item is at most n

2t .

P (|St | ≥ 1) = P
(

max
i

Xi > t
)

= n
2t .

By picking t = 3 log n
We have that the probability that S3 log2 n has at least one entry is at most:

n
23 log2 n = n

n3 = 1
n2 .
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Look at we want to model

We want to model
The height of the Skip List is at most t = 3 log2 n
Equivalent to the negation of having list S3 log2 n

Then, the probability that the height h = 3 log2 n of the skip list is

P (Skip List height 3 log2 n) = 1− 1
n2
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Finally

The expected number of nodes used by the skip list with height h

Given that h = 3 log2 n

3 log2 n∑
i=0

n
2i = n

3 log2 n∑
i=0

1
2i

Given the geometric sum

Sm =
m∑

k=0
rk = 1− rm+1

1− r
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We have finally
The Upper Bound on the number of nodes

n
3 log2 n∑

i=0

1
2i =n

(
1− (1/2)3 log2 n+1

1− 1/2

)

=n
(

1− 1/2 (1/2log2 n)3

1/2

)

We have then
1

2log2 n = 1
n

Then

n
(

1− 1/2 (1/2log2 n)3

1/2

)
= n

(
1− 1

2n2

1/2

)
= n

(
2− 1

2n2

)
= 2n − 1

2n
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Finally

The Upper Bound with probability 1− 1
n2

2n − 1
2n ≤ 2n = O (n)
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Search and Insertion Times

Something Notable
The expected number of coin tosses required in order to get tails is 2.

We use this
To prove that a search in a skip list takes O(log n) expected time.

After all insertions require searches!!!
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Search and Insertions times

Search time
The search time in skip list is proportional to

the number of drop-down steps + the number of scan-forward steps

Drop-down steps
The drop-down steps are bounded by the height of the skip list and thus
are O (log2 n) with high probability.

Theorem
A search in a skip list takes O (log2 n) expected time.
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Proof

First
When we scan forward in a list, the destination key does not belong to a
higher list.

A scan-forward step is associated with a former coin toss that gave
tails
By Fact 4, in each list the expected number of scan-forward steps is 2.
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Why?

Given the list Si

Then, the scan-forward intervals (Jumps between xi and xi+1) to the right
of Si are

I1 = [x1, x2],I2 = [x2, x3]...Ik = [xk , +∞]

Then
These interval exist at level i if and only if all x1, x2, ..., xk belong to Si .
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We introduce the following concept based on these
intervals

Scan-forward siblings
These are element that you find in the search path before finding an
element in the upper list.
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Now

Given that a search is being done, Si contains l forward siblings
It must be the case that given x1, ..., xl scan-forward siblings, we have that

x1, ..., xl /∈ Si+1

and xl+1 ∈ Si+1
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Thus

We have
Since each element of Si is independently chosen to be in Si+1 with
probability p = 1

2 .

We have
The number of scan-forward siblings is bounded by a geometric random
variable Xi with parameter p = 1

2 .

Thus, we have that
The expected number of scan-forward siblings is bounded by 2!!!

Expected # Scan-Fordward Siblings at i ≤ E [Xi ] = 1
1/2︸ ︷︷ ︸

Mean

= 2
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Then

In the worst case scenario
A search is bounded by 2 log2 n = O (log2 n)

An given that a insertion is a (search) + (deletion bounded by
the height)
Thus, an insertion is bounded by 2 log2 n + 3 logn n = O (log2 n)
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Applications

We have
Cyrus IMAP servers offer a "skiplist" backend Data Base
implementation.
Lucene uses skip lists to search delta-encoded posting lists in
logarithmic time.
Redis, an ANSI-C open-source persistent key/value store for Posix
systems, uses skip lists in its implementation of ordered sets.
leveldb, a fast key-value storage library written at Google that
provides an ordered mapping from string keys to string values.
Skip lists are used for efficient statistical computations of running
medians.
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Summary

Summary
A skip list is a data structure for dictionaries that uses a randomized
insertion algorithm.
In a skip list with n entries:

I The expected space used is O(n)
I The expected search, insertion and deletion time is O(log n)

Skip list are fast and simple to implement in practice.
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Thanks

Questions?
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