Analysis of Algorithms Skip Lists

Andres Mendez-Vazquez

October 18, 2015

Outline

Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation

2 Skip Lists

- Why Skip Lists?
- The Idea Behind All of It!!!
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- Search and Insertion Times
- Applications
- Summary

Outline

Dictionaries

Definitions

- Dictionary operations
- Dictionary implementation

2 Skip Lists

- Why Skip Lists?
- The Idea Behind All of It!!!
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- Search and Insertion Times
- Applications
- Summary

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Purpose Dictionaries keep track of current members, with periodic insertion deletions into the set (circular to a detabase)

Symbol table (with duplicates)

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

zxamples

- Membership in a club.
- Course records.
- Symbol table (with duplicates)
- Language dictionary (Webster, RAE, Oxford)

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

- Membership in a club.
- Course records.
- Symbol table (with duplicates)
- Language dictionary (Webster, RAE, Oxford)

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

Examples

- Membership in a club.
- Course records.
- Symbol table (with duplicates).

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

Examples

- Membership in a club.
- Course records.
- Symbol table (with duplicates)

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

Examples

- Membership in a club.
- Course records.
- Symbol table (with duplicates).

Definition

A dictionary is a collection of elements; each of which has a unique search key.

- Uniqueness criteria may be relaxed (multi-set).
- Do not force uniqueness.

Purpose

Dictionaries keep track of current members, with periodic insertions and deletions into the set (similar to a database).

Examples

- Membership in a club.
- Course records.
- Symbol table (with duplicates).
- Language dictionary (Webster, RAE, Oxford).

Example: Course records

Dictionary with member records

key ID	Student Name	HW1	
123	Stan Smith	49	
125	Sue Margolin	45	
128	Billie King	24	
	÷		
	÷		
190	Roy Miller	36	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Dictionaries

Definitions

Dictionary operations

Dictionary implementation

- Why Skip Lists?
- The Idea Behind All of It!!!
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- Search and Insertion Times
- Applications
- Summary

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findItem(key): Locates the item with the specified key.
- findAllItems(key): Locates all items with the specified key.
- removeltem(key): Removes the item with the specified key.
- removeAllItems(key): Removes all items with the specified key.
- insertItem(key,element): Inserts a new key-element pair.

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findItem(key): Locates the item with the specified key.
- findAllItems(key): Locates all items with the specified key.
- removeltem(key): Removes the item with the specified key.
- removeAllItems(key): Removes all items with the specified key.
- insertItem(key,element): Inserts a new key-element pair.

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findItem(key): Locates the item with the specified key.
- findAllItems(key): Locates all items with the specified key.
- removeltem(key): Removes the item with the specified key.
- removeAllItems(key): Removes all items with the specified key.
- insertItem(key,element): Inserts a new key-element pair.

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findItem(key): Locates the item with the specified key.
- findAllItems(key): Locates all items with the specified key.
- removeltem(key): Removes the item with the specified key.
- removeAllItems(key): Removes all items with the specified key.
- insertItem(key,element): Inserts a new key-element pair.

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findItem(key): Locates the item with the specified key.
- findAllItems(key): Locates all items with the specified key.
- removeltem(key): Removes the item with the specified key.
- removeAllItems(key): Removes all items with the specified key.
- insertItem(key,element): Inserts a new key-element pair

Some operations on dictionaries

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findItem(key): Locates the item with the specified key.
- findAllItems(key): Locates all items with the specified key.
- removeltem(key): Removes the item with the specified key.
- removeAllItems(key): Removes all items with the specified key.

) insertItem(key,element): Inserts a new key-element pair

ヘロト 人間ト 人目下 人目下

- size(): Returns the size of the dictionary.
- empty(): Returns TRUE if the dictionary is empty.
- findItem(key): Locates the item with the specified key.
- findAllItems(key): Locates all items with the specified key.
- removeltem(key): Removes the item with the specified key.
- removeAllItems(key): Removes all items with the specified key.
- insertItem(key,element): Inserts a new key-element pair.

Example of unordered dictionary

Example

Consider an empty unordered dictionary, we have then...

Operation	Dictionary	Output	
InsertItem(5, A)	$\{(5,A)\}$		
InsertItem(7,B)	$\{(5, A), (7, B)\}$		
findItem(7)	$\{(5, A), (7, B)\}$	В	
findItem(4)	$\{(5, A), (7, B)\}$	No Such Key	
size()	$\{(5, A), (7, B)\}$	2	
removeltem(5)	$\{(7,B)\}$	A	
findItem(4)	$\{(7,B)\}$	No Such Key	

Outline

Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation

- Why Skip Lists?
- The Idea Behind All of It!!!
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- Search and Insertion Times
- Applications
- Summary

- Sequences / Arrays
 - Ordered
 - Unordered
 - Binary search trees
- Skip lists
- Hash tables

- Sequences / Arrays
 - Ordered
 - Unordered
- Binary search trees
- Skip lists
- Hash tables

- Sequences / Arrays
 - Ordered
 - Unordered
- Binary search trees
- Skip lists
- Hash tables

- Sequences / Arrays
 - Ordered
 - Unordered
- Binary search trees
- Skip lists
- Hash tables

<ロト < 部 > < 言 > < 言 > 言 の Q () 11 / 99

Unordered array

Complexity

• Searching and removing takes O(n).

Unordered array

Complexity

- Searching and removing takes O(n).
- Inserting takes O(1).

\pplications

This approach is good for log files where insertions are frequent but searches and removals are rare.

Unordered array

Complexity

- Searching and removing takes O(n).
- Inserting takes O(1).

Applications

This approach is good for log files where insertions are frequent but searches and removals are rare.

Ordered array

Complexity

• Searching takes $O(\log n)$ time (binary search).

Ordered array

Complexity

- Searching takes $O(\log n)$ time (binary search).
- Insert and removing takes O(n) time.

plications

This aproach is good for look-up tables where searches are frequent but nsertions and removals are rare.

Ordered array

Complexity

- Searching takes $O(\log n)$ time (binary search).
- Insert and removing takes O(n) time.

Applications

This aproach is good for look-up tables where searches are frequent but insertions and removals are rare.

Binary searches

Features

- Narrow down the search range in stages
- "High-low" game.

Binary searches

Example find Element(22)

14/99
Binary searches

Example find Element(22)

2		4	5	7	8	9	12	14	17	19	22	25	2	7	28	33	
↑ LOW	7				↑ ↑ MID HIGH												I
2	4	5	7	8	9	12	14	4 17	7	19	22	25	27	7	28	33	
								↑ LO	W			\uparrow_{MID}				↑ HIGH	

Binary searches

Example find Element(22)

2	4	5	7	8	9	12	14	17	19	22	25	27	28	33	
$_{LOW}^{\uparrow}$				$\uparrow \qquad \uparrow \\ MID \qquad \qquad HIGH$											
2 4	4 5	7	8	9	1	2 1	4 1	7	19	22	25	27	28	33]
							1 <i>LC</i>	W			$\mathop{\uparrow}_{MID}$			↑ HIGH	
2 4	1 5	7	8	9	1	2 1	4 1	7	19	22	2 2	25 2	27	28 33]
							1 <i>LC</i>	W	$\mathop{\uparrow}_{MID}$	↑ <i>HIC</i>	GΗ				
									LOW	$\uparrow = MID =$	HIGH				

Binary searches

Example find Element(22)

	2		4	5	7	8	9	12 1		4	17	19	2	2	25	27	28	33		
	↑ LOW	7			↑ ↑ MID HIGH												Н			
	2	4	5	7	8	9	1	2 1	L4	17	,	19	22		25	27	28	33		
										↑ LOI	W				↑ MID			↑ HIGE	I	
	2	4	5	7	8	9	1	2 1	L4	17	,	19		22	2	5 2	7 2	8 33	3	
										\uparrow	W	$\stackrel{\uparrow}{_{MID}}$	Н	↑ IGE	I					
2	4	5	7	8	9	1	.2	14	17	1	9		22	2		25	27	28	33	
												LOW	\uparrow = MII	D = P	HIGH					
																	. = .			

Implement a dictionary with a BST

A binary search tree is a binary tree $\ensuremath{\mathcal{T}}$ such that:

- Each internal node stores an item (k, e) of a dictionary.
- Keys stored at nodes in the left subtree of v are less than or equal to k.
- Keys stored at nodes in the right subtree of v are greater than or equal to k.

Implement a dictionary with a BST

A binary search tree is a binary tree $\ensuremath{\mathcal{T}}$ such that:

- Each internal node stores an item (k, e) of a dictionary.
- Keys stored at nodes in the left subtree of v are less than or equal to k.
- Keys stored at nodes in the right subtree of v are greater than or equal to k.

Implement a dictionary with a BST

A binary search tree is a binary tree $\ensuremath{\mathcal{T}}$ such that:

- Each internal node stores an item (k, e) of a dictionary.
- Keys stored at nodes in the left subtree of v are less than or equal to k.

Keys stored at nodes in the right subtree of v are greater than or equal to k.

Implement a dictionary with a BST

A binary search tree is a binary tree T such that:

- Each internal node stores an item (k, e) of a dictionary.
- Keys stored at nodes in the left subtree of v are less than or equal to k.
- Keys stored at nodes in the right subtree of v are greater than or equal to k.

Binary searches Trees

Problem!!! Keeping a Well Balanced Binary Search Tree can be difficult!!!

Binary Search Trees

- They are not so well suited for parallel environments.
 - Unless a heavy modifications are done

Binary Search Trees

- They are not so well suited for parallel environments.
 - Unless a heavy modifications are done

In addition

We want to have a

• Compact Data Structure.

Using as little memory as possible

Binary Search Trees

- They are not so well suited for parallel environments.
 - Unless a heavy modifications are done

In addition

We want to have a

• Compact Data Structure.

Binary Search Trees

- They are not so well suited for parallel environments.
 - Unless a heavy modifications are done

In addition

We want to have a

- Compact Data Structure.
- Using as little memory as possible

Thus, we have the following possibilities

Unordered a	rray complexities
Insertion:	<i>O</i> (1)
Search:	O(n)

Thus, we have the following possibilities

Unordered array complexities

Insertion: O(1)Search: O(n)

Ordered array complexities

Insertion: O(n)Search: $O(n \log n)$

Well balanced binary trees complexities

```
Insertion: O(\log n)
```

Search: $O(\log n)$

Big Drawback - Complex parallel Implementation and waste of memory.

Thus, we have the following possibilities

Unordered array complexities

Insertion: O(1)Search: O(n)

Ordered array complexities

Insertion: O(n)Search: $O(n \log n)$

Well balanced binary trees complexities

Insertion: $O(\log n)$ Search: $O(\log n)$

Big Drawback - Complex parallel Implementation and waste of memory.

We want something better!!!

For this

We will present a probabilistic data structure known as Skip List!!!

19/99

イロト イヨト イヨト

Outline

Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation
- 2 Skip Lists
 - Why Skip Lists?
 - The Idea Behind All of It!!!
 - Skip List Definition
 - Skip list implementation
 - Insertion for Skip Lists
 - Deletion in Skip Lists
 - Properties
 - Search and Insertion Times
 - Applications
 - Summary

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it ($\Theta(n)$ search complexity).

Then, using this How do we speed up searches?

Something Notable

• Use two link list, one a subsequence of the other.

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it (Θ(n) search complexity).
- Then, using this How do we speed up searches?

• Use two link list, one a subsequence of the other.

Imagine the two lists as a road system

lacksquare The Bottom is the normal road system, $L_2.$

 $igodoldsymbol{
ho}$ The Top is the high way system, L_1 .

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it (Θ(n) search complexity).
- Then, using this How do we speed up searches?

Something Notable

• Use two link list, one a subsequence of the other.

• The Bottom is the normal road system, L_2 . • The Top is the high way system, L_1 .

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it (Θ(n) search complexity).
- Then, using this How do we speed up searches?

Something Notable

• Use two link list, one a subsequence of the other.

Imagine the two lists as a road system

1 The Bottom is the normal road system, L_2 .

- Imagine that you only require to have searches.
- A first approximation to it is the use of a link list for it (Θ(n) search complexity).
- Then, using this How do we speed up searches?

Something Notable

• Use two link list, one a subsequence of the other.

Imagine the two lists as a road system

- **1** The Bottom is the normal road system, L_2 .
- 2) The Top is the high way system, L_1 .

Outline

Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation

2 Skip Lists

• Why Skip Lists?

• The Idea Behind All of It!!!

- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- Search and Insertion Times
- Applications
- Summary

Example

High-Bottom Way System

Thus, we have...

The following rule

To Search first search in the top one (L_1) as far as possible, then go down and search in the bottom one (L_2) .

24 / 99

イロト イロト イヨト イヨト

We can use a little bit of optimization

We have the following worst cost

Search Cost High-Bottom Way System = Cost Searching Top +...

Cost Search Bottom

Or

Search Cost $= length(L_1) + Cost$ Search Bottom

The interesting part is "Cost Search Bottom

This can be calculated by the following quotient:

 $\frac{length\left(L_{2}\right)}{length\left(L_{1}\right)}$

We can use a little bit of optimization

We have the following worst cost

Search Cost High-Bottom Way System = Cost Searching Top +...

Cost Search Bottom

Or

Search Cost $= length(L_1) + Cost$ Search Bottom

The interesting part is "Cost Search Bottom"

This can be calculated by the following quotient:

 $\frac{length\left(L_{2}\right)}{length\left(L_{1}\right)}$

25 / 99

イロン イロン イヨン イヨン

Why?

If we think we are jumping

Then cost of searching each of the bottom segments =

Thus the ratio is a "decent" approximation to the worst case search

$$\frac{length\left(L_2\right)}{length\left(L_1\right)} = \frac{5}{3} = 1.66$$

Why?

If we think we are jumping

Then cost of searching each of the bottom segments = 2

Thus the ratio is a "decent" approximation to the worst case search

$$\frac{\text{length}(L_2)}{\text{length}(L_1)} = \frac{5}{3} = 1.66$$

26 / 99

イロト イヨト イヨト

Thus, we have...

Then, the cost for a search (when $length(L_2) = n$)

Search Cost =
$$length(L_1) + \frac{length(L_2)}{length(L_1)} = length(L_1) + \frac{n}{length(L_1)}$$
 (1)

Taking the derivative with respect to $length(L_1)$ and making the result equal 0.

27 / 99

イロン イヨン イヨン イヨン 三日

Thus, we have...

Then, the cost for a search (when $length(L_2) = n$)

Search Cost =
$$length(L_1) + \frac{length(L_2)}{length(L_1)} = length(L_1) + \frac{n}{length(L_1)}$$
 (1)

Taking the derivative with respect to $\mathit{length}\left(\mathit{L}_{1}\right)$ and making the result equal 0

$$1 - \frac{n}{length^2\left(L_1\right)} = 0$$

27 / 99

イロン イロン イヨン イヨン

Final Cost

We have that the optimal length for L_1

 $length(L_1) = \sqrt{n}$

Plugging back in (Eq.

Search Cost $= \sqrt{n} + \frac{n}{\sqrt{n}} = \sqrt{n} + \sqrt{n} = 2 \times \sqrt{n}$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 28 / 99

Final Cost

We have that the optimal length for L_1

 $length(L_1) = \sqrt{n}$

Plugging back in (Eq. 1)

Search Cost
$$= \sqrt{n} + \frac{n}{\sqrt{n}} = \sqrt{n} + \sqrt{n} = 2 \times \sqrt{n}$$

Data structure with a Square Root Relation

29 / 99

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Now

For a three layer link list data structure

We get a search cost of $3\times\sqrt[3]{n}$

In general for k layers, we have

 $k imes \sqrt[k]{n}$

Thus, if we make $k = \log_2 n$, we get

Search Cost = $\log_2 n \times \log_2 \sqrt[n]{n}$ = $\log_2 n \times (n)^{1/\log_2 n}$ = $\log_2 n \times (n)^{\log_n 2}$ = $\log_2 n \times 2$ = $\Theta (\log_2 n)$
Now

For a three layer link list data structure

We get a search cost of $3\times\sqrt[3]{n}$

In general for k layers, we have

 $k\times \sqrt[k]{n}$

Thus, if we make $k = \log_2 n$, we get

Search Cost =
$$\log_2 n \times \log_2 n \sqrt{n}$$

= $\log_2 n \times (n)^{1/\log_2 n}$
= $\log_2 n \times (n)^{\log_n 2}$
= $\log_2 n \times 2$
= $\Theta (\log_2 n)$

.

Now

For a three layer link list data structure

We get a search cost of $3\times\sqrt[3]{n}$

In general for k layers, we have

 $k \times \sqrt[k]{n}$

Thus, if we make $k = \log_2 n$, we get

Search Cost =
$$\log_2 n \times \log_2 \sqrt[n]{n}$$

= $\log_2 n \times (n)^{1/\log_2 n}$
= $\log_2 n \times (n)^{\log_n 2}$
= $\log_2 n \times 2$
= $\Theta (\log_2 n)$

Thus

Something Notable

We get the advantages of the binary search trees with a simpler architecture!!!

Thus

Binary Search Trees

New Architecture

Thus

Binary Search Trees

New Architecture

イロン イロン イヨン イヨン

2

32 / 99

We are ready to give a

Definition for Skip List

33 / 99

2

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Outline

Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation

2 Skip Lists

- Why Skip Lists?
- The Idea Behind All of It!!!

• Skip List Definition

- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- Search and Insertion Times
- Applications
- Summary

Skip List

They were invented by William Worthington "Bill" Pugh Jr.!!!

35 / 99

э

イロン イ団 とくほとう ほんし

Skip List

They were invented by William Worthington "Bill" Pugh Jr.!!!

How is him?

- He is is an American computer scientist who invented the skip list and the Omega test for deciding Presburger arithmetic.
- He was highly influential in the development of the current memory model of the Java language together with his PhD student Jeremy Manson.

Skip List

They were invented by William Worthington "Bill" Pugh Jr.!!!

How is him?

- He is is an American computer scientist who invented the skip list and the Omega test for deciding Presburger arithmetic.
- He was the co-author of the static code analysis tool FindBugs.

He was highly influential in the development of the current memory model of the Java language together with his PhD student Jeremy Manson.

35 / 99

< ロ > < 同 > < 回 > < 回 >

Skip List

They were invented by William Worthington "Bill" Pugh Jr.!!!

How is him?

- He is is an American computer scientist who invented the skip list and the Omega test for deciding Presburger arithmetic.
- He was the co-author of the static code analysis tool FindBugs.
- He was highly influential in the development of the current memory model of the Java language together with his PhD student Jeremy Manson.

35 / 99

Definition

A skip list for a set S of distinct (key,element) items is a series of lists S_0,S_1,\ldots,S_h such that:

- Each list S_i contains the special keys $+\infty$ and $-\infty$
- List S_0 contains the keys of S in nondecreasing order
- Each list is a subsequence of the previous one
 - $\blacktriangleright S_0 \supseteq S_1 \supseteq S_2 \supseteq \ldots \supseteq S_h$
- List S_h contains only the two special keys

Definition

A skip list for a set S of distinct (key,element) items is a series of lists $S_0, S_1, ..., S_h$ such that:

- \bullet Each list S_i contains the special keys $+\infty$ and $-\infty$
- List S₀ contains the keys of S in nondecreasing order
- Each list is a subsequence of the previous one
 - $\blacktriangleright S_0 \supseteq S_1 \supseteq S_2 \supseteq \ldots \supseteq S_h$
- List S_h contains only the two special keys

Definition

A skip list for a set S of distinct (key,element) items is a series of lists $S_0, S_1, ..., S_h$ such that:

- ullet Each list S_i contains the special keys $+\infty$ and $-\infty$
- List S_0 contains the keys of S in nondecreasing order
 - Each list is a subsequence of the previous one
 - $\blacktriangleright S_0 \supseteq S_1 \supseteq S_2 \supseteq \ldots \supseteq S_h$
- List S_h contains only the two special keys

Definition

A skip list for a set S of distinct (key,element) items is a series of lists $S_0, S_1, ..., S_h$ such that:

- \bullet Each list S_i contains the special keys $+\infty$ and $-\infty$
- List S_0 contains the keys of S in nondecreasing order
- Each list is a subsequence of the previous one

• List S_h contains only the two special keys

Definition

A skip list for a set S of distinct (key,element) items is a series of lists $S_0, S_1, ..., S_h$ such that:

- \bullet Each list S_i contains the special keys $+\infty$ and $-\infty$
- List S_0 contains the keys of S in nondecreasing order
- Each list is a subsequence of the previous one

 $\blacktriangleright S_0 \supseteq S_1 \supseteq S_2 \supseteq \ldots \supseteq S_h$

• List S_h contains only the two special keys

36 / 99

< ロ > < 同 > < 回 > < 回 >

Definition

A skip list for a set S of distinct (key,element) items is a series of lists $S_0, S_1, ..., S_h$ such that:

- \bullet Each list S_i contains the special keys $+\infty$ and $-\infty$
- $\bullet~{\rm List}~S_0$ contains the keys of S in nondecreasing order
- Each list is a subsequence of the previous one
 - $\blacktriangleright S_0 \supseteq S_1 \supseteq S_2 \supseteq \ldots \supseteq S_h$
- List S_h contains only the two special keys

36 / 99

イロト イヨト イヨト

- We start at the first position of the top list.
- At the current position p, we compare x with y == p.next.key
 - x == y: we return p.next.element
 - x > y: we scan forward
 - x < y: we "drop down"
- If we try to drop down past the bottom list, we return null.

- We start at the first position of the top list.
- At the current position p, we compare x with y == p.next.key
 - x == y: we return p.next.element
 - x > y: we scan forward
 - x < y: we "drop down
- If we try to drop down past the bottom list, we return null

- We start at the first position of the top list.
- At the current position p, we compare x with y == p.next.key
 - x == y: we return p.next.element

ullet If we try to drop down past the bottom list, we return null

- We start at the first position of the top list.
- At the current position p, we compare x with y == p.next.key
 - x == y: we return p.next.element
 - ► x > y: we scan forward

If we try to drop down past the bottom list, we return null.

Skip list search

We search for a key x in a skip list as follows

- We start at the first position of the top list.
- At the current position p, we compare x with y == p.next.key
 - x == y: we return p.next.element
 - ► x > y: we scan forward
 - ▶ x < y: we "drop down"</p>

• If we try to drop down past the bottom list, we return null.

- We start at the first position of the top list.
- At the current position p, we compare x with y == p.next.key
 - x == y: we return p.next.element
 - ► x > y: we scan forward
 - ► x < y: we "drop down"</p>

• If we try to drop down past the bottom list, we return *null*.

38 / 99

イロト イヨト イヨト

x < p.next.key: "drop down"

x > p.next.key: "scan forward"

40 / 99

э

x < p.next.key: "drop down"

41 / 99

э

x > p.next.key: "scan forward"

42 / 99

э

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

x > p.next.key: "scan forward"

43 / 99

э

x < p.next.key: "drop down"

44 / 99

э

x == y: we return *p.next.element*

45 / 99

э

Outline

Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation

2 Skip Lists

- Why Skip Lists?
- The Idea Behind All of It!!!
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- Search and Insertion Times
- Applications
- Summary

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node
- Link to the below node

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node
- Link to the below node

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node
- Link to the below node

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node
- Link to the below node

How do we implement this data structure?

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node
- Link to the below node

Also we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them.

How do we implement this data structure?

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node
- Link to the below node

Also we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them.

How do we implement this data structure?

We can implement a skip list with quad-nodes

A quad-node stores:

- Entry Value
- Link to the previous node
- Link to the next node
- Link to the above node
- Link to the below node

Also we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them.

47 / 99

< ロ > < 同 > < 回 > < 回 >

Example

Quad-Node Example

48 / 99

イロン イボン イヨン トヨ

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

- The coins are unbiased.
- The coin tosses are independent.

		rimester
		City Douge
	・ロト ・回 ト ・ ヨト ・ ヨト	E 990

49 / 99

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

The coins are unbiased.

The coin tosses are independent.

Worst case running time

The worst case running time of a randomized algorithm is often large but has very low probability.

• e.g. It occurs when all the coin tosses give "heads."

cinvestav

- ・ロト・日本・モト・モト・ ヨー めんの
 - 49 / 99

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

• The coins are unbiased.

The coin tosses are independent.

Worst case running time

The worst case running time of a randomized algorithm is often large but has very low probability.

• e.g. It occurs when all the coin tosses give "heads."

cinvestav

- ・ロト・西・・ヨ・・ヨ・ ・日・ うくの
 - 49 / 99

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

- The coins are unbiased.
- The coin tosses are independent.

Norst case running time

The worst case running time of a randomized algorithm is often large but has very low probability.

• e.g. It occurs when all the coin tosses give "heads."

cinvestav

- ◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □目 → ∽への
 - 49 / 99

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

- The coins are unbiased.
- The coin tosses are independent.

Worst case running time

The worst case running time of a randomized algorithm is often large but has very low probability.

It occurs when all the coin tosses give "heads."

cinvester

49 / 99

< ロ > < 同 > < 回 > < 回 >

Use of randomization

We use a randomized algorithm to insert items into a skip list.

Running time

We analyze the expected running time of a randomized algorithm under the following assumptions:

- The coins are unbiased.
- The coin tosses are independent.

Worst case running time

The worst case running time of a randomized algorithm is often large but has very low probability.

• e.g. It occurs when all the coin tosses give "heads."

cinveste

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 49/99

Outline

Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation

2 Skip Lists

- Why Skip Lists?
- The Idea Behind All of It!!!
- Skip List Definition
- Skip list implementation

Insertion for Skip Lists

- Deletion in Skip Lists
- Properties
- Search and Insertion Times
- Applications
- Summary

To insert

- We repeatedly toss a coin until we get tails
 - We denote with i the number of times the coin came up heads.
- If $i \ge h$, we add to the skip list new lists $S_{h+1}, ..., S_{i+1}$:
 - Each containing only the two special keys.
- We search for x in the skip list and find the positions p₀, p₁, ..., p_i of the items with largest key less than x in each lists S₀, S₁, ..., S_i.
- For $j \leftarrow 0, ..., i$, we insert item (key, object) into list S_j after position p_j .

To insert

- We repeatedly toss a coin until we get tails:
 - We denote with i the number of times the coin came up heads.
- If $i \ge h$, we add to the skip list new lists $S_{h+1}, ..., S_{i+1}$:
 - Each containing only the two special keys.
- We search for x in the skip list and find the positions p₀, p₁, ..., p_i of the items with largest key less than x in each lists S₀, S₁, ..., S_i.
- For $j \leftarrow 0, ..., i$, we insert item (key, object) into list S_j after position p_j .

To insert

- We repeatedly toss a coin until we get tails:
 - ▶ We denote with *i* the number of times the coin came up heads.
- If $i \ge h$, we add to the skip list new lists $S_{h+1}, ..., S_{i+1}$:
 - Each containing only the two special keys.
 - We search for x in the skip list and find the positions p₀, p₁, ..., p_i of the items with largest key less than x in each lists S₀, S₁, ..., S_i.
- For $j \leftarrow 0, ..., i$, we insert item (key, object) into list S_j after position p_j .

To insert

- We repeatedly toss a coin until we get tails:
 - ▶ We denote with *i* the number of times the coin came up heads.
- If $i \ge h$, we add to the skip list new lists $S_{h+1}, ..., S_{i+1}$:
 - Each containing only the two special keys.
- We search for x in the skip list and find the positions p₀, p₁, ..., p_i of the items with largest key less than x in each lists S₀, S₁, ..., S_i.
- For $j \leftarrow 0, ..., i$, we insert item (key, object) into list S_j after position p_j .

To insert

To insert an entry (key, object) into a skip list, we use a randomized algorithm:

- We repeatedly toss a coin until we get tails:
 - ▶ We denote with *i* the number of times the coin came up heads.
- If $i \ge h$, we add to the skip list new lists $S_{h+1}, ..., S_{i+1}$:
 - Each containing only the two special keys.

• We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each lists $S_0, S_1, ..., S_i$.

• For $j \leftarrow 0, ..., i$, we insert item (key, object) into list S_j after position p_j .

To insert

To insert an entry (key, object) into a skip list, we use a randomized algorithm:

- We repeatedly toss a coin until we get tails:
 - ▶ We denote with *i* the number of times the coin came up heads.
- If $i \ge h$, we add to the skip list new lists $S_{h+1}, ..., S_{i+1}$:
 - Each containing only the two special keys.
- We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each lists $S_0, S_1, ..., S_i$.

51 / 99

3

To insert

To insert an entry (key, object) into a skip list, we use a randomized algorithm:

- We repeatedly toss a coin until we get tails:
 - ▶ We denote with *i* the number of times the coin came up heads.
- If $i \ge h$, we add to the skip list new lists $S_{h+1}, ..., S_{i+1}$:
 - Each containing only the two special keys.
- We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each lists $S_0, S_1, ..., S_i$.
- For $j \leftarrow 0, ..., i$, we insert item (key, object) into list S_j after position p_j .

- 3

To insert

To insert an entry (key, object) into a skip list, we use a randomized algorithm:

- We repeatedly toss a coin until we get tails:
 - ▶ We denote with *i* the number of times the coin came up heads.
- If $i \ge h$, we add to the skip list new lists $S_{h+1}, ..., S_{i+1}$:
 - Each containing only the two special keys.
- We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each lists $S_0, S_1, ..., S_i$.
- For $j \leftarrow 0, ..., i$, we insert item (key, object) into list S_j after position p_j .

3

52 / 99

3

53 / 99

3

54 / 99

3

イロト 不得 とくきとくきとう

55 / 99

Insert the necessary Quad-Nodes and necessary information

56 / 99

3

57 / 99

э

Outline

Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation

2 Skip Lists

- Why Skip Lists?
- The Idea Behind All of It!!!
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists

Deletion in Skip Lists

- Properties
- Search and Insertion Times
- Applications
- Summary

Deletion

To remove an entry with key x from a skip list, we proceed as follows

- We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with key x, where position p_j is in list S_j .
- We remove positions $p_0, p_1, ..., p_i$ from the lists $S_0, S_1, ..., S_i.$
- We remove all but one list containing only the two special keys

Deletion

To remove an entry with key x from a skip list, we proceed as follows

- We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with key x, where position p_i is in list S_j .
- We remove positions $p_0, p_1, ..., p_i$ from the lists $S_0, S_1, ..., S_i$.

We remove all but one list containing only the two special keys.

Deletion

To remove an entry with key x from a skip list, we proceed as follows

- We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with key x, where position p_j is in list S_j .
- We remove positions $p_0, p_1, ..., p_i$ from the lists $S_0, S_1, ..., S_i$.
- We remove all but one list containing only the two special keys

We search for 34 in the skip list and find the positions $p_0, p_1, ..., p_2$ of the items with key 34

60 / 99

< ロ > < 同 > < 回 > < 回 >

We search for 34 in the skip list and find the positions $p_0, p_1, ..., p_2$ of the items with key 34

61/99

イロト イヨト イヨト

62 / 99

< ロ > < 同 > < 回 > < 回 >

63 / 99

イロト イヨト イヨト

64 / 99

One Quad-Node after another $S_3 - \infty$ + ∞ $S_2 - \infty$ + ∞ $S_1 - \infty$ 23 + ∞ $S_0 - \infty$ 12 23 45 + ∞

65 / 99

3

Outline

Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation

2 Skip Lists

- Why Skip Lists?
- The Idea Behind All of It!!!
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists

Properties

- Search and Insertion Times
- Applications
- Summary

Space usage

Space usage

The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm.

68 / 99

イロト イヨト イヨト イヨト

Theorem

The expected space usage of a skip list with n items is O(n).

Theorem

The expected space usage of a skip list with n items is O(n).

Proof

We use the following two basic probabilistic facts:

- Fact 1: The probability of getting i consecutive heads when flipping a coin is ¹/₂₁.
- Fact 2: If each of n entries is present in a set with probability p, the expected size of the set is np.
 - How? Remember X = X₁ + X₂ + ... + X_n where X_i is an indicator function for event A_i = the i element is present in the set. Thus:

$$E[X] = \sum_{\substack{i=1 \\ \text{Equivalence } E[X_A] \text{ and } Pr\{A_i\}} \sum_{i=1}^n p = np$$

Theorem

The expected space usage of a skip list with n items is O(n).

Proof

We use the following two basic probabilistic facts:

- Fact 1: The probability of getting i consecutive heads when flipping a coin is ¹/_{2i}.
 -) Fact 2: If each of n entries is present in a set with probability p, the expected size of the set is np.
 - How? Remember X = X₁ + X₂ + ... + X_n where X_i is an indicator function for event A_i = the i element is present in the set. Thus:

$$E\left[X\right] = \underbrace{\sum_{i=1}^{n} E\left[X_{i}\right] = \sum_{i=1}^{n} Pr\left\{A_{i}\right\}}_{\text{Equivalence } E\left[X_{A}\right] \text{ and } Pr\left\{A\right\}} = \sum_{i=1}^{n} p = np$$

Theorem

The expected space usage of a skip list with n items is O(n).

Proof

We use the following two basic probabilistic facts:

- Fact 1: The probability of getting i consecutive heads when flipping a coin is ¹/_{2ⁱ}.
- *Fact 2:* If each of *n* entries is present in a set with probability *p*, the expected size of the set is *np*.

How? Remember $X = X_1 + X_2 + ... + X_n$ where X_i is an indicator function for event A_i = the *i* element is present in the set. Thus:

Theorem

The expected space usage of a skip list with n items is O(n).

Proof

We use the following two basic probabilistic facts:

- Fact 1: The probability of getting i consecutive heads when flipping a coin is ¹/_{2ⁱ}.
- *Fact 2:* If each of *n* entries is present in a set with probability *p*, the expected size of the set is *np*.
 - How? Remember X = X₁ + X₂ + ... + X_n where X_i is an indicator function for event A_i = the i element is present in the set. Thus:

Theorem

The expected space usage of a skip list with n items is O(n).

Proof

We use the following two basic probabilistic facts:

- Fact 1: The probability of getting i consecutive heads when flipping a coin is ¹/_{2i}.
- *Fact 2:* If each of *n* entries is present in a set with probability *p*, the expected size of the set is *np*.
 - How? Remember X = X₁ + X₂ + ... + X_n where X_i is an indicator function for event A_i = the i element is present in the set. Thus:

$$E[X] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} Pr\{A_i\} = \sum_{i=1}^{n} p = np$$

Equivalence $E[X_A]$ and $Pr\{A\}$

Now consider a skip list with n entries

Using Fact 1, an element is inserted in list S_i with a probability of

 $\overline{2^i}$

Now by Fact 2

The expected size of list S_i is

Now consider a skip list with n entries

Using Fact 1, an element is inserted in list S_i with a probability of

 $\frac{1}{2^i}$

 $\frac{n}{2^i}$

Now by Fact 2

The expected size of list S_i is

70/99

イロト イロト イヨト イヨト

The expected number of nodes used by the skip list with height h

$$\sum_{i=0}^{h} \frac{n}{2^{i}} = n \sum_{i=0}^{h} \frac{1}{2^{i}}$$

Here, we have a problem!!! What is the value of h?

Height h

First

The running time of the search and insertion algorithms is affected by the height \boldsymbol{h} of the skip list.

Second

We show that with high probability, a skip list with n items has height $O(\log n)$.

 $\mathsf{Height}\ h$

First

The running time of the search and insertion algorithms is affected by the height \boldsymbol{h} of the skip list.

Second

We show that with high probability, a skip list with n items has height $O(\log n).$

72 / 99

< ロ > < 回 > < 回 > < 回 > < 回 >

For this, we have the following fact!!!

We use the following Fact 3

We can view the level $l(x_i) = \max \{j | where x_i \in S_j\}$ of the elements in the skip list as the following random variable

$$X_i = l\left(x_i\right)$$

for each element x_i in the skip list.

For this, we have the following fact!!!

We use the following Fact 3

We can view the level $l(x_i) = \max \{j | where x_i \in S_j\}$ of the elements in the skip list as the following random variable

$$X_i = l\left(x_i\right)$$

for each element x_i in the skip list.

And this is a random variable!!!

• Remember the insertions!!! Using an unbiased coin!!

For this, we have the following fact!!!

We use the following Fact 3

We can view the level $l(x_i) = \max \{j | where x_i \in S_j\}$ of the elements in the skip list as the following random variable

$$X_i = l\left(x_i\right)$$

for each element x_i in the skip list.

And this is a random variable!!!

- Remember the insertions!!! Using an unbiased coin!!
- Thus, all X_i have a geometric distribution.

Example for $l(x_i)$

74 / 99

э

イロト イロト イヨト イヨト

BTW What is the geometric distribution?

k failures where

$$k=\{1,2,3,\ldots\}$$

Probability mass function

 $Pr(X = k) = (1 - p)^{k-1} p$

BTW What is the geometric distribution?

k failures where

$$k=\{1,2,3,\ldots\}$$

Probability mass function

$$Pr(X = k) = (1 - p)^{k-1} p$$

Probability Mass Function

Then

Beca

We have the following inequality for the geometric variables

$$Pr[X_i > t] \le (1-p)^t \ \forall i = 1, 2, ..., n$$

use if the cdf $F(t) = P(X < t) = 1 - (1-p)^{t+1}$

I hen, we have

 $Pr\left\{\max_{i} X_{i} > t\right\} \le n(1-p)^{t}$

This comes from $F_{\max_{i} X_{i}}(t) = (F(t))^{n}$

Then

We have the following inequality for the geometric variables

$$Pr[X_i > t] \le (1-p)^t \ \forall i = 1, 2, ..., n$$

Because if the cdf $F(t) = P(X \le t) = 1 - (1 - p)^{t+1}$

Then, we have

$$Pr\left\{\max_{i} X_{i} > t\right\} \le n(1-p)^{t}$$

This comes from $F_{\max_{i} X_{i}}(t) = (F(t))^{n}$

Observations

The $\max_i X_i$

It represents the list with the one entry apart from the special keys.

78 / 99

イロト イボト イヨト イヨト

Observations

REMEMBER!!!

We are talking about a fair coin, thus $p = \frac{1}{2}$.

79 / 99

2

イロン イ団 とく ヨン イヨン

Height: $3 \log_2 n$ with probability at least $1 - \frac{1}{n^2}$

Theorem

A skip list with n entries has height at most $3\log_2 n$ with probability at least $1-\frac{1}{n^2}$

Consider a skip list with n entires

By Fact 3, the probability that list S_t has at least one item is at most $\frac{n}{2^t}$.

$$P\left(|S_t| \ge 1\right) = P\left(\max_i X_i > t\right) = \frac{n}{2^t}.$$

By picking $t = 3 \log n$

We have that the probability that $S_{3\log_2 n}$ has at least one entry is at most:

$$\frac{n}{2^{3\log_2 n}} = \frac{n}{n^3} = \frac{1}{n^2}.$$

Consider a skip list with n entires

By Fact 3, the probability that list S_t has at least one item is at most $\frac{n}{2^t}$.

$$P\left(|S_t| \ge 1\right) = P\left(\max_i X_i > t\right) = \frac{n}{2^t}$$

By picking $t = 3 \log n$

We have that the probability that $S_{3\log_2 n}$ has at least one entry is at most:

$$\frac{n}{2^{3\log_2 n}} = \frac{n}{n^3} = \frac{1}{n^2}$$

81 / 99

< ロ > < 回 > < 回 > < 回 > < 回 >

Look at we want to model

We want to model

• The height of the Skip List is at most $t = 3 \log_2 n$

 \circ Equivalent to the negation of having list $S_{3\log_2 r}$

Look at we want to model

We want to model

- $\bullet\,$ The height of the Skip List is at most $t=3\log_2 n$
- Equivalent to the negation of having list $S_{3\log_2 n}$

Then, the probability that the height $h=3\log_2 n$ of the skip list is $P\left({ m Skip}\ { m List}\ { m height}\ 3\log_2 n ight)=1-rac{1}{n^2}$

Look at we want to model

We want to model

- The height of the Skip List is at most $t = 3 \log_2 n$
- Equivalent to the negation of having list $S_{3\log_2 n}$

Then, the probability that the height $h = 3 \log_2 n$ of the skip list is $P(\text{Skip List height } 3 \log_2 n) = 1 - \frac{1}{n^2}$

82 / 99

イロン イロン イヨン イヨン

Finally

The expected number of nodes used by the skip list with height \boldsymbol{h}

Given that $h = 3 \log_2 n$

$$\sum_{i=0}^{3\log_2 n} \frac{n}{2^i} = n \sum_{i=0}^{3\log_2 n} \frac{1}{2^i}$$

Given the geometric sum

$$S_m = \sum_{k=0}^m r^k = \frac{1 - r^{m+1}}{1 - r}$$

Finally

The expected number of nodes used by the skip list with height \boldsymbol{h}

Given that $h = 3 \log_2 n$

$$\sum_{i=0}^{3\log_2 n} \frac{n}{2^i} = n \sum_{i=0}^{3\log_2 n} \frac{1}{2^i}$$

Given the geometric sum

$$S_m = \sum_{k=0}^m r^k = \frac{1 - r^{m+1}}{1 - r}$$

We have finally

The Upper Bound on the number of nodes

$$n \sum_{i=0}^{3 \log_2 n} \frac{1}{2^i} = n \left(\frac{1 - (1/2)^{3 \log_2 n + 1}}{1 - 1/2} \right)$$
$$= n \left(\frac{1 - 1/2 (1/2^{\log_2 n})^3}{1/2} \right)$$

We have then

$$\frac{1}{\log_2 n} = \frac{1}{n}$$

$$n\left(\frac{1-\frac{1}{2}\left(\frac{1}{2^{\log_2 n}}\right)^3}{\frac{1}{2}}\right) = n\left(\frac{1-\frac{1}{2n^2}}{\frac{1}{2}}\right) = n\left(2-\frac{1}{2n^2}\right) = 2n - \frac{1}{2n}$$

We have finally

The Upper Bound on the number of nodes

$$n \sum_{i=0}^{3 \log_2 n} \frac{1}{2^i} = n \left(\frac{1 - (1/2)^{3 \log_2 n + 1}}{1 - 1/2} \right)$$
$$= n \left(\frac{1 - 1/2 \left(\frac{1}{2^{\log_2 n}} \right)^3}{1/2} \right)$$

We have then

$$\frac{1}{2^{\log_2 n}} = \frac{1}{n}$$

Then

$$n\left(\frac{1-\frac{1}{2}\left(\frac{1}{2^{\log_2 n}}\right)^3}{\frac{1}{2}}\right) = n\left(\frac{1-\frac{1}{2n^2}}{\frac{1}{2}}\right) = n\left(2-\frac{1}{2n^2}\right) = 2n - \frac{1}{2n}$$

We have finally

The Upper Bound on the number of nodes

$$n \sum_{i=0}^{3 \log_2 n} \frac{1}{2^i} = n \left(\frac{1 - (1/2)^{3 \log_2 n + 1}}{1 - 1/2} \right)$$
$$= n \left(\frac{1 - 1/2 \left(\frac{1}{2^{\log_2 n}} \right)^3}{1/2} \right)$$

We have then

$$\frac{1}{2^{\log_2 n}} = \frac{1}{n}$$

Then

$$n\left(\frac{1-\frac{1}{2}\left(\frac{1}{2^{\log_2 n}}\right)^3}{\frac{1}{2}}\right) = n\left(\frac{1-\frac{1}{2n^2}}{\frac{1}{2}}\right) = n\left(2-\frac{1}{2n^2}\right) = 2n - \frac{1}{2n}$$

Finally

The Upper Bound with probability $1 - \frac{1}{n^2}$

$$2n-\frac{1}{2n}\leq 2n=O\left(n\right)$$

85 / 99

イロン イヨン イヨン イヨン 三日
Outline

Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation

2 Skip Lists

- Why Skip Lists?
- The Idea Behind All of It!!!
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties

• Search and Insertion Times

- Applications
- Summary

Search and Insertion Times

Something Notable

The expected number of coin tosses required in order to get tails is 2.

We use this

To prove that a search in a skip list takes $\mathit{O}(\log n)$ expected time.

After all insertions require searches!!!

Search and Insertion Times

Something Notable

The expected number of coin tosses required in order to get tails is 2.

We use this

To prove that a search in a skip list takes $O(\log n)$ expected time.

• After all insertions require searches!!!

Search and Insertions times

Search time

The search time in skip list is proportional to

the number of drop-down steps + the number of scan-forward steps

Drop-down steps

The drop-down steps are bounded by the height of the skip list and thus are $O(\log_2 n)$ with high probability.

Theorem

A search in a skip list takes $O(\log_2 n)$ expected time.

Search and Insertions times

Search time

The search time in skip list is proportional to

the number of drop-down steps + the number of scan-forward steps

Drop-down steps

The drop-down steps are bounded by the height of the skip list and thus are $O\left(\log_2 n\right)$ with high probability.

Theorem

A search in a skip list takes $O\left(\log_2 n
ight)$ expected time.

88 / 99

Search and Insertions times

Search time

The search time in skip list is proportional to

the number of drop-down steps + the number of scan-forward steps

Drop-down steps

The drop-down steps are bounded by the height of the skip list and thus are $O\left(\log_2 n\right)$ with high probability.

Theorem

A search in a skip list takes $O(\log_2 n)$ expected time.

88 / 99

Proof

First

When we scan forward in a list, the destination key does not belong to a higher list.

A scan-forward step is associated with a former coin toss that gave

By Fact 4, in each list the expected number of scan-forward steps is 2.

Proof

First

When we scan forward in a list, the destination key does not belong to a higher list.

A scan-forward step is associated with a former coin toss that gave tails

By Fact 4, in each list the expected number of scan-forward steps is 2.

89 / 99

Given the list S_i

Then, the scan-forward intervals (Jumps between x_i and x_{i+1}) to the right of S_i are

$$I_1 = [x_1, x_2], I_2 = [x_2, x_3] \dots I_k = [x_k, +\infty]$$

Then

These interval exist at level i if and only if all $x_1, x_2, ..., x_k$ belong to $S_i.$

Given the list S_i

Then, the scan-forward intervals (Jumps between x_i and x_{i+1}) to the right of S_i are

$$I_1 = [x_1, x_2], I_2 = [x_2, x_3] \dots I_k = [x_k, +\infty]$$

Then

These interval exist at level *i* if and only if all $x_1, x_2, ..., x_k$ belong to S_i .

90 / 99

< ロ > < 回 > < 回 > < 回 > < 回 >

We introduce the following concept based on these intervals

Scan-forward siblings

These are element that you find in the search path before finding an element in the upper list.

91/99

Given that a search is being done, S_i contains l forward siblings

It must be the case that given $x_1, ..., x_l$ scan-forward siblings, we have that

$$x_1, \dots, x_l \notin S_{i+1}$$

and $x_{l+1} \in S_{i+1}$

Thus

We have

Since each element of S_i is independently chosen to be in S_{i+1} with probability $p=\frac{1}{2}.$

We have

The number of scan-forward siblings is bounded by a geometric random variable X_i with parameter $p=\frac{1}{2}.$

Thus, we have that

The expected number of scan-forward siblings is bounded by 2!!!

Expected # Scan-Fordward Siblings at $i \leq E[X_i] = \frac{1}{\frac{1}{2}} = 2$ Mean

Thus

We have

Since each element of S_i is independently chosen to be in S_{i+1} with probability $p=\frac{1}{2}.$

We have

The number of scan-forward siblings is bounded by a geometric random variable X_i with parameter $p = \frac{1}{2}$.

Thus, we have that

The expected number of scan-forward siblings is bounded by 2!!!

xpected # Scan-Fordward Siblings at
$$i \leq B[X_i] = \frac{1}{1/2} = 2$$

Mean

Thus

We have

Since each element of S_i is independently chosen to be in S_{i+1} with probability $p=\frac{1}{2}.$

We have

The number of scan-forward siblings is bounded by a geometric random variable X_i with parameter $p = \frac{1}{2}$.

Thus, we have that

The expected number of scan-forward siblings is bounded by 2!!!

Expected # Scan-Fordward Siblings at
$$i \leq E[X_i] = \frac{1}{1/2} = 2$$

Mean

In the worst case scenario

A search is bounded by $2\log_2 n = O(\log_2 n)$

An given that a insertion is a (search) + (deletion bounded by the height)

Thus, an insertion is bounded by $2\log_2 n + 3\log_n n = O(\log_2 n)$

In the worst case scenario

A search is bounded by $2\log_2 n = O(\log_2 n)$

An given that a insertion is a **(search) + (deletion bounded by the height)**

Thus, an insertion is bounded by $2\log_2 n + 3\log_n n = O(\log_2 n)$

Outline

Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation

2 Skip Lists

- Why Skip Lists?
- The Idea Behind All of It!!!
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- Search and Insertion Times

Applications

Summary

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.
- Redis, an ANSI-C open-source persistent key/value store for Posix systems, uses skip lists in its implementation of ordered sets.
- leveldb, a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values.
- Skip lists are used for efficient statistical computations of running medians.

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.
- Redis, an ANSI-C open-source persistent key/value store for Posix systems, uses skip lists in its implementation of ordered sets.
- leveldb, a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values.
- Skip lists are used for efficient statistical computations of running medians.

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.
- Redis, an ANSI-C open-source persistent key/value store for Posix systems, uses skip lists in its implementation of ordered sets.
- leveldb, a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values.
 Skip lists are used for efficient statistical computations of running medians.

We have

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.
- Redis, an ANSI-C open-source persistent key/value store for Posix systems, uses skip lists in its implementation of ordered sets.
- leveldb, a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values.

Skip lists are used for efficient statistical computations of running medians.

96 / 99

< ロ > < 同 > < 回 > < 回 >

- Cyrus IMAP servers offer a "skiplist" backend Data Base implementation.
- Lucene uses skip lists to search delta-encoded posting lists in logarithmic time.
- Redis, an ANSI-C open-source persistent key/value store for Posix systems, uses skip lists in its implementation of ordered sets.
- leveldb, a fast key-value storage library written at Google that provides an ordered mapping from string keys to string values.
- Skip lists are used for efficient statistical computations of running medians.

Outline

Dictionaries

- Definitions
- Dictionary operations
- Dictionary implementation

2 Skip Lists

- Why Skip Lists?
- The Idea Behind All of It!!!
- Skip List Definition
- Skip list implementation
- Insertion for Skip Lists
- Deletion in Skip Lists
- Properties
- Search and Insertion Times
- Applications
- Summary

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:
 - The expected space used is O(n)
 - The expected search, insertion and deletion time is $O(\log n)$
- Skip list are fast and simple to implement in practice.

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:
 - The expected space used is O(n)
 - The expected search, insertion and deletion time is $O(\log n)$
 - Skip list are fast and simple to implement in practice.

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:
 - The expected space used is O(n)
 - ▶ The expected search, insertion and deletion time is $O(\log n)$

Skip list are fast and simple to implement in practice.

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:
 - ▶ The expected space used is *O*(*n*)
 - ▶ The expected search, insertion and deletion time is $O(\log n)$

Skip list are fast and simple to implement in practice.

98 / 99

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:
 - ▶ The expected space used is *O*(*n*)
 - ▶ The expected search, insertion and deletion time is $O(\log n)$

Skip list are fast and simple to implement in practice.

98 / 99

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm.
- In a skip list with n entries:
 - ▶ The expected space used is *O*(*n*)
 - The expected search, insertion and deletion time is $O(\log n)$
- Skip list are fast and simple to implement in practice.

98 / 99

Thanks

Questions?

<ロト < 部 > < 注 > < 注 > 注 の Q (C 99 / 99