Introduction to Data Science GIRI NARASIMHAN, SCIS, FIU

Streams \& Bloom Filters

Moments

- i-th Momemt
- Zeroth Moment: Count of distinct elements in stream
- First Moment: Count of elements in stream, i.e., Size of stream; sum of frea
- Second Moment: Sum of squares of frequencies
- Average $=$?
- Variance $=$?

$$
\frac{1}{m} \sum_{s=1}^{m}\left(f_{s}-\frac{n}{m}\right)^{2}=\frac{1}{m} \sum_{s=1}^{m}\left(f_{s}^{2}-2 \frac{n}{m} f_{s}+\left(\frac{n}{m}\right)^{2}\right)=\left(\frac{1}{m} \sum_{s=1}^{m} f_{s}^{2}\right)-\frac{n^{2}}{m^{2}}
$$

Sampling Woes

- Stream: Tuples (user, query, time); Sampling: 1 in 10
- Each user has 1/10 of their queries processed
- Query: Fraction of typical user's queries repeated over last month
- Correct Answer: Suppose user has s unique queries and d queries twice and NO queries more than twice in the last month; Answer = $d /(s+d)$
- Problem: Reported fraction would be wrong
- In the sampled stream, s/10 are unique queries and d/100 queries appear twice
- The remainder of the queries that should appear twice will appear once 18d/100
. We will report $d /(10 s+19 d)[d / 100$ twice and $s / 10+18 d / 100$ once

Improved Solution for Sampling Woes

- Problem is that we are picking $1 / 10$ of the queries
- We need to pick $1 / 10$ of the users and pick all their queries
- If we can store $1 / 10$ of the users, then for every query we can decide either to process or not
- Improved Solution: Hash user ID (actually, IP address) to 0 ... 9
- Pick only those that hash to 0
- Sampling Question: How to sample at rate of 1/70?
- Sampling Question: How to sample at rate of 23/70?

Sampling

- Sampling can be applied if the filtering test is easy (e.g., hash value $=0$? Temperature > 22 degrees?)
- Sampling is harder if it involves a lookup (e.g., has this query been asked before by this user? Is this user among the top 10% of the frequent users list?)
- Other techniques are available for filtering
- Bloom Filters

Example: Bloom Filters for Spam

- White lists: allowed email addresses
- Assume we have 1 Billion allowed email addresses
- Assume black list is much larger than white list
- If each email address is 20 bytes, this takes 20 GB to store
- Bloom Filters: store white lists as bit hash arrays
- Every email address is hashed and a 1 is stored in the location if it is in white list
- In 1 GB, we can store hash array of size 8 Billion
- Strict White Lists: use bloom filters and then verify with real white list
- Stricter White List: use cascade of bloom filters

Bloom Filters: Test for Membership

- Array of n bits, initially all 0's
- Collection of k hash functions. Each hash func maps a key to n buckets
- Given key K, compute K hash values and
- Check that each location in bit array is a 1
- Even if one is 0 , then it fails the test

False Positive Rate

- Assume we have \mathbf{x} targets and \mathbf{y} darts
- Prob a dart will hit a specific target $=1 / x$

$$
\begin{aligned}
& (1-h)^{1 / h}=e \mathrm{f} \\
& \text { small } h
\end{aligned}
$$

- Prob a dart does not hit a specific target $=1-(1 / x)=(x-1) / x$
- Prob that y darts miss a specific target $=((x-1) / x)^{y}$
- Prob that y darts miss a specific target $=e-y / x$
- Let $x=8 B ; y=1 B$; Then prob of missing a target $=e^{-1 / 8}$
- Prob of hitting a target $=$ false positive rate $=1-e^{-1 / 8}=0.1175$
- If $k=2$, the prob becomes $\left(1-e^{-1 / 4}\right)^{2}=0.0493$

False Positive Rate

- Let $\mathrm{n}=$ bit array length $=8 \mathrm{~B}$
- Let $m=\#$ of members $=1 B$
- Let $\mathrm{k}=\#$ of hash functions $=1$
- Prob that a white list email hashes to a location $=10-9$
- False positive rate is given by
- ($\left.1-e^{-k m / n}\right)^{k}$

Counting distinct elements

- How many unique users in a give period?
- How many users (IP addresses) visited a webpage?
- Each IP address is 4 bytes $=32$ bits
- 4 billion IP addresses are possible $=16$ GB

If we need this for each webpage and there are thousands, then we cannot store in memory

Flajolet-Martin Algorithm

- For each element obtain a sufficiently long hash
- Has to be more possible results of hash than elements in the universal set
- Example, use 64 bits (2^{64} ~ 10^{19}) to hash URLs (4 Billion)
- High prob that different elements get different hash values
- Some fraction of these hash values will be "unusual"
- We will focus on the ones that have r Os at the end of its hash value
- Prob of hash value to end in r 0 s is $2-r$
- Prob that m unique items have has values that don't end in $r \mathrm{Os}$ is $(1-2-r) m=e-m 2-r$

Summary

- Look at the probability $=e^{-m 2^{-r}}$
- If m is much larger than $2 r$, then prob approaches 1
- If m is much smaller than $2 r$, then prob approaches 0
- Thus 2^{2} is a good choice, where R is the largest tail of $0 s$

Clustering

Clustering dogs using height \& weight

Figure 7.1: Heights and weights of dogs taken from three varieties

Clustering dogs using height \& weight

Figure 7.1: Heights and weights of dogs taken from three varieties

Clustering

- Clustering is the process of making clusters, which put similar things together into same cluster ...
- And put dissimilar things into different clusters
- Need a similarity function
- Need a similarity distance function
- Convenient to map items to points in space

Distance Functions

- Jaccard Distance
- Hamming Distance
- Euclidean Distance
- Cosine Distance
- Edit Distance
- ...
- What is a distance function
- $D(x, y)>=0$
- $D(x, y)=D(y, x)$
- $D(x, y)<=D(x, z)+D(z, y)$

Clustering Strategies

- Hierarchical or Agglomerative
- Bottom-up
- Partitioning methods
- Top-down
- Density-based
- Cluster-based
- Iterative methods

Curse of Dimensionality

- N points in d-dimensional space
- If $d=1$, then average distance $=1 / 3$
- As d gets larger, what is the average distance? Distribution of distances?
- \# of nearby points for any a given point vanishes. So, clustering does not work well
- \# of points at max distance (\sim sqrt(d)) also vanishes. Real range actually very small
- Angle $A B C$ given 3 points approaches 90
- Denominator grows linearly with d
- Expected cos $=0$ since equal points expected in all 4 quadrants

$$
\frac{\sum_{i=1}^{d} x_{i} y_{i}}{\sqrt{\sum_{i=1}^{d} x_{i}^{2}} \sqrt{\sum_{i=1}^{d} y_{i}^{2}}}
$$

Hierarchical Clustering

Hierarchical Clustering

- Starts with each item in different clusters
- Bottom up
- In each iteration
- Two clusters are identified and merged into one
- Items are combined as the algorithm progresses
- Questions:
- How are clusters represented
- How to decide which ones to merge
- What is the sopping condition
- Typical algorithm: find smallest distance between nodes of different clusters

Hierarchical Clustering

Output of Clustering: Dendrogram

Measures for a cluster

- Radius: largest distance from a centroid
- Diameter: largest distance between some pair of points in cluster
- Density: \# of points per unit volume
- Volume: some power of radius or diameter
- Good cluster: when diameter of each cluster is much larger than its nearest cluster or nearest point outside cluster

Stopping condition for clustering

- Cluster radius or diameter crosses a threshold
- Cluster density drops below a certain threshold
- Ratio of diameter to distance to nearest cluster drops below a certain threshold

