COT 6405: Analysis of Algorithms

Giri NARASIMHAN

Amortized Analysis
Problem 1: Binary Counter

- **Data Structure**: binary counter \(b \).
- **Operations**: \(\text{Inc}(b) \).
 - Cost of \(\text{Inc}(b) \) = number of bits flipped in the operation.
- What’s the total cost of \(N \) operations when this counter counts up to integer \(N \)?
- **Approach 1: simple analysis**
 - Size of counter is \(\log(N) \). Worst case when every bit flipped. For \(N \) operations, total worst-case cost = \(O(N\log(N)) \)
Amortized Analysis: Potential Method

- For \(n \) operations, the data structure goes through states: \(D_0, D_1, D_2, \ldots, D_n \) with costs \(c_1, c_2, \ldots, c_n \).
- Define potential function \(\Phi(D_i) \): represents the potential energy of data structure after \(i_{th} \) operation.
- The amortized cost of the \(i_{th} \) operation is defined by:
 \[
 \hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})
 \]
- The total amortized cost is
 \[
 \sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1})) = \Phi(D_n) - \Phi(D_0) + \sum_{i=1}^{n} c_i
 \]
 \[
 \sum_{i=1}^{n} c_i = -(\Phi(D_n) - \Phi(D_0)) + \sum_{i=1}^{n} \hat{c}_i
 \]
Potential Method for Binary Counter

- Potential function = ??
- $\Phi(D) = \#\ of\ 1's\ in\ counter$
- Assume that in i-th iteration $Inc(b)$ changes
 - $1 \rightarrow 0$ (j bits)
 - $0 \rightarrow 1$ (1 bit)
- $\Phi(D_{i-1}) = k$; $\Phi(D_i) = k - j + 1$
- Change in potential = $(k - j + 1) - k = -j$
- Real cost = $j + 1$
- Amortized cost = Real cost + change in potential
- Amortized cost = $j + 1 - j + 1 = 2$
Problem 2: Stack Operations

- Data Structure: **Stack**
- Operations:
 - *Push*(s, x) : Push object x into stack s.
 - Cost: \(T(push) = O(1) \).
 - *Pop*(s) : Pop the top object in stack s.
 - Cost: \(T(pop) = O(1) \).
 - *MultiPop*(s, k) ; Pop the top k objects in stack s.
 - Cost: \(T(mp) = O(size(s)) \) worst case
- **Assumption**: Start with an empty stack
- **Simple analysis**: For \(N \) operations, maximum stack size = \(N \). Worst-case cost of *MultiPop* = \(O(N) \). Total worst-case cost of \(N \) operations is at most \(N \times T(mp) = O(N^2) \).
Amortized analysis: Stack Operations

- **Intuition:** Worst case cannot happen all the time!
- **Idea:** pay a dollar for every operation, then count carefully.
- **Pay $2 for each Push operation,** one to pay for operation, another for “future use” (pin it to object on stack).
- **For Pop or MultiPop,** instead of paying from pocket, pay for operations with extra dollar pinned to popped objects.
- **Total cost of N operations must be less than 2 x N**
- **Amortized cost = \(\frac{T(N)}{N} = 2 \).**
Potential Method for Stack Problem

- Potential function $\Phi(D) = \# \text{ of items in stack}$
- Push
 - Change in potential = 1; Real cost = 1
 - Amortized Cost = 2
- MultiPop [Assume j items popped in i^{th} iter]
 - $\Phi(D_{i-1}) = k; \Phi(D_i) = k - j$
 - Real cost = j
 - Change in potential = $-j$
 - Amortized cost = Real cost + change in potential
 - Amortized cost = $j - j = 0$

Pop: $j = 1$
Online Algorithms
Online Problems

- Should I buy a car/skis/camping gear or rent them when needed?
- Should I buy Google stocks today or sell them or hold on to them?
- Should I work on my homework in Algorithms or my homework in OS or on my research?
- Decisions have to be made based on past and current request/task
How to Analyze Online Algorithms?

- Competitive analysis
 - Compare with optimal offline algorithm (OPT)
 - Algorithm A is \textit{a-competitive} if there exists constants b such that for every sequence of inputs σ:
 - $\text{cost}_A(\sigma) \leq a\text{cost}_{OPT}(\sigma) + b$
Ski Rental Problem

- Should I buy skis or rent them?
 - Rental is $A per trip
 - Purchase costs $B

- Idea:
 - Rent for m trips, where
 - \(m = \frac{B}{A} \)
 - Then purchase skis

- Analysis:
 - Competitiveness ratio = 2. Why?
Paging Problem

- **Given 2-level storage system**
 - Limited Faster Memory (k pages) “CACHE”
 - Unlimited Slower Memory
- **Input**: Sequence of page requests
- **Assumption**: “Lazy” response (Demand Paging)
 - If page is in CACHE, no changes to contents
 - If page is not in CACHE, make place for it in CACHE by replacing an existing page
- **Need**: A “page replacement” algorithm
Well-known Page Replacement Algorithms

- **LRU**: evict page whose most recent access was earliest among all pages
- **FIFO**: evict page brought in earliest
- **LIFO**: evict page brought in most recently
- **LFU**: evict page least frequently used
Comparing online algorithms?

- Analyze: time? performance?
 - Input length?
 - Performance depends on request sequence
 - Probabilistic models? Markov Decision process
- Competitive analysis [Sleator and Tarjan]
 - Compare with optimal offline algorithm (OPT)
 - OPT is clairvoyant; no prob assumptions; “worst-case”
- Algorithm A is α-competitive if there exists constants b such that for every σ:
 - $\text{cost}_A(\sigma) \leq \alpha \text{cost}_{OPT}(\sigma) + b$

Game between Cruel Adversary and your algorithm
Optimal Algorithm for Paging

- **MIN** (Longest Forward Distance): Evict the page whose next access is latest.
- **Cost**: # of page faults
- **Competitive Analysis**: Compare
 - # of page faults of algorithm A with
 - # of page faults of algorithm MIN
- We want to compute the competitiveness of LRU, LIFO, FIFO, LFU, etc.
Lower Bound for any online algorithm

- Cannot achieve better than k-competitive!
 - No deterministic algorithm is α-competitive, $\alpha < k$
 - Fix online algorithm A,
 - Construct a request sequence σ, and
 - Show that: $\text{cost}_A(\sigma) \geq k \times \text{cost}_{\text{OPT}}(\sigma)$

- Sequence σ will only have $k+1$ possible pages
 - make $1..k+1$ the first $k+1$ requests
 - make next request as the page evicted by A
 - A will fault on every request
 - OPT? Will not fault more than once every k requests
Upper Bound: LRU is k-Competitive

- **Lemma 1**: If any subseq has k+1 distinct pages, MIN (any alg) faults at least once
- **Lemma 2**: Between 2 LRU faults on same page, there must be k other distinct faults
 - Let T be any subsequence of σ with exactly k faults for LRU & with p accessed just before T.
 - LRU cannot fault on same page twice within T
 - LRU cannot fault on p within T
 - Thus, p followed by T requests k+1 distinct pages and MIN must fault at least once on T
LRU is k-competitive

Partition σ into subsequences as follows:

- Let s_0 include the first request, p, and the first k faults for LRU
- Let s_i include subsequence after s_{i-1} with the next k faults for LRU
- Argument applies for $T = s_i$, for every $i > 0$
- If both algorithms start with empty CACHE or identical CACHE, then it applies to $i = 0$ also
- Otherwise, LRU incurs k extra faults

Thus, $\text{cost}_A(\sigma) \leq k \text{cost}_{OPT}(\sigma) + k$
Other Page Replacement Algorithms

- FIFO is k-competitive (Homework!)
- MFU and LIFO?
How to Analyze Online Algorithms?

- Competitive analysis
 - Compare with optimal offline algorithm (OPT)
 - Algorithm A is \(\alpha \)-competitive if there exists constants \(b \) such that for every sequence of inputs \(\sigma \):
 - \(\text{cost}_A(\sigma) \leq \alpha \text{cost}_{\text{OPT}}(\sigma) + b \)
Alternative Analysis Technique

- Cannot consider requests separately since
 - If $\text{cost}_A = 1$ and $\text{cost}_{\text{OPT}} = 0$, ratio = infinity

- So **amortize** on a sequence of requests

- We achieve this using a **Potential Function**
 - Let’s first do this for LRU
LRU Analysis using potential functions

- Define the potential function as follows:
 \[\Phi(t) = \sum_{x \in (LRU - OPT)} \text{Rank}(x) \]
 - Here \(\text{Rank}(x) \) is its position in LRU counted from the least recently used item

- Consider an arbitrary request
- Assume that OPT serves request first
- Then LRU serves request
- We will show that for each step \(t \), we have
 \[\text{cost}_{LRU}(t) + \Phi(t) - \Phi(t-1) \leq k \text{cost}_{OPT}(t) \]
LRU Analysis (Cont’d): OPT serves

- We will show that for each step t, we have
 \[\text{cost}_{\text{LRU}}(t) + \Phi(t) - \Phi(t-1) \leq k \text{cost}_{\text{OPT}}(t) \]

- If OPT has a hit, then
 \[\text{cost}_{\text{LRU}}(t) = \text{cost}_{\text{OPT}}(t) = \Delta \Phi = 0 \]

- If OPT has a miss, then
 \[\text{cost}_{\text{LRU}}(t) = 0 \]
 \[\text{cost}_{\text{OPT}}(t) = 1 \]
 \[\Delta \Phi \leq k \]
 - Because OPT may evict something in LRU
LRU Analysis (Cont’d): LRU serves

- We will show that for each step t, we have
 \[\text{cost}_{\text{LRU}}(t) + \Phi(t) - \Phi(t-1) \leq k \text{cost}_{\text{OPT}}(t) \]

- If LRU has a hit, then
 \[\text{cost}_{\text{LRU}}(t) = \text{cost}_{\text{OPT}}(t) = 0; \Delta \Phi \leq 0 \]

- If LRU has a miss, then
 \[\text{cost}_{\text{LRU}}(t) = 1; \text{cost}_{\text{OPT}}(t) = 0 \]
 There exists at least one item x in $\text{LRU} - \text{OPT}$
 - If x is evicted, then $\Delta \Phi \leq -w(x) \leq -1$
 - If not, its rank is reduced by ≥ 1. Thus $\Delta \Phi \leq -1$
Thus for each step t, we have

$$\text{cost}_{\text{LRU}}(t) + \Phi(t) - \Phi(t-1) \leq k \text{cost}_{\text{OPT}}(t)$$

Adding over all steps t, we get

$$\Sigma \text{cost}_{\text{LRU}}(t) + \Sigma (\Phi(t) - \Phi(t-1)) \leq k \Sigma \text{cost}_{\text{OPT}}(t)$$

$$\Sigma \text{cost}_{\text{LRU}}(t) + \Phi(m) - \Phi(0) \leq k \Sigma \text{cost}_{\text{OPT}}(t)$$

But $\Phi(0) = 0$, and

$$\Phi(m) \geq 0$$

Thus, $\text{cost}_A(\sigma) \leq k \text{cost}_{\text{OPT}}(\sigma)$
DBL(2c)

- DBL(2c) has 2 lists
 - \(L_1 \) is list of pages accessed once
 - \(L_2 \) is list of pages accessed once
- Any hit moves item to MRU(\(L_2 \))
- Any miss has 2 cases
 - If \(L_1 \) has \(c \) items, then move new item to MRU(\(L_1 \)) and delete LRU(\(L_1 \))
 - If \(L_1 \) has at most \(c \) items, then move new item to MRU(\(L_1 \)) and delete LRU(\(L_2 \))
Adaptive Replacement Cache (ARC)

Megiddo & Modha,
FAST 2003
Analyzing Rand Online Algorithms?

- Algorithm A is \(\alpha \)-competitive if there exists constants \(b \) such that for every sequence of inputs \(\sigma \):
 \[
 \text{cost}_A(\sigma) \leq \alpha \text{cost}_{\text{OPT}}(\sigma) + b
 \]

- Randomized Algorithm R is \(\alpha \)-competitive if there exists constants \(b \) such that for every sequence of inputs \(\sigma \):
 \[
 \mathbb{E}[\text{cost}_R(\sigma)] \leq \alpha \text{cost}_{\text{OPT}}(\sigma) + b
 \]
What to read next?

- Heaps and Priority Queues
- Heap Sort