COT 6405: Analysis of Algorithms
Giri NARASIMHAN
Relax Step

(a)

(b)
All Pairs Shortest Path Algorithm

- Invoke Dijkstra’s SSSP algorithm n times.
- Or use dynamic programming. How?
First Variant

- Let $D[i,j,m] = \text{length of the shortest path from } I \text{ to } j \text{ that uses at most } m \text{ edges}$
- $D[i,j,0] = ?$; $D[i,j,1] = ?$
- Recurrence Relation

\[
\begin{align*}
 l_{ij}^{(m)} &= \min_{\substack{1 \leq k \leq n}} \{l_{ij}^{(m-1)} + l_{ik}^{(m-1)} + w_{kj}\} \\
 &= \min_{\substack{1 \leq k \leq n}} \{l_{ik}^{(m-1)} + w_{kj}\}.
\end{align*}
\]
Second Variant

- \(C[i,j,k] = \) length of shortest path from \(i \) to \(j \) that only uses vertices from \(\{1, 2, \ldots, k\} \)

\[
d_{ij}^{(k)} = \begin{cases}
 w_{ij} & \text{if } k = 0 \\
 \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \neq 0
\end{cases}
\]
Figure 14.38
Worst-case running times of various graph algorithms

<table>
<thead>
<tr>
<th>Type of Graph Problem</th>
<th>Running Time</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>Weighted, no negative edges</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>Weighted, negative edges</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>Weighted, acyclic</td>
<td>$O(</td>
<td>E</td>
</tr>
</tbody>
</table>
Figure 25.4 The sequence of matrices $D^{(i)}$ and $\Pi^{(i)}$ computed by the Floyd-Warshall algorithm for the graph in Figure 25.1.
FLOYD-WARSHALL(W)
1 $n = W.rows$
2 $D^{(0)} = W$
3 for $k = 1$ to n
4 let $D^{(k)} = d_{ij}^{(k)}$ be a new $n \times n$ matrix
5 for $i = 1$ to n
6 for $j = 1$ to n
7 $d_{ij}^{(k)} = \min d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$
8 return $D^{(n)}$
Main loops of Floyd-Warshall’s algorithm

\[
\text{for } k \leftarrow 1 \text{ to } n \\
\text{for } i \leftarrow 1 \text{ to } n \\
\text{for } j \leftarrow 1 \text{ to } n \\
\text{if } c_{ij} > c_{ik} + c_{kj} \then c_{ij} \leftarrow c_{ik} + c_{kj}
\]
Time Complexity

- Time Complexity = $O(n^3)$
- Improvements are possible with faster matrix multiplication algorithm.
Connectivity & Biconnectivity
Graph is **connected** if there exists a path between every pair of vertices.

A tree is **minimally connected**

Removing a edge/vertex from a **minimally connected** graph makes it disconnected.

Graph is **biconnected** if there exists 2 or more **disjoint** paths between every pair of vertices.

A cycle is **minimally biconnected**

You need to remove at least 2 vertices/edges to disconnect a **minimally biconnected** graph.

Every node lies on a cycle
Connected & Biconnected Components

- Subgraph $G'(V', E')$ is a connected component of $G(V, E)$ if V' is a maximal subset of V that induces a connected subgraph.

- If a graph is not connected, it can be decomposed into connected components.

- Subgraph $G'(V', E')$ is a biconnected component of $G(V, E)$ if V' is a maximal subset of V that induces a biconnected subgraph.

- If a graph is not biconnected, it can be decomposed into biconnected components.
What does DFS do for us?
Testing for Biconnectivity

- An **articulation point** is a vertex whose removal disconnects a graph.
- A **bridge** is an edge whose removal disconnects a graph.

Claim: If a graph is not biconnected, it must have an articulation point. **Proof?** "If and only if"?

How do we look for articulation points (and bridges)?

- Use **DFS**
If root of DFS tree has at least 2 children, it’s an articulation point
- Easy to check!

Non-root vertex \(u \) is an articulation point of \(G \) if and only if \(u \) has a child \(v \) such that there is no back edge from \(v \) or any descendant of \(v \) to a proper ancestor of \(u \)

Compute \(\text{Low}[x] = \) lowest numbered vertex reachable from some descendant of \(x \) (default is \(d[x] \))

Vertex \(u \) is an articulation point if \(\text{Low}[s] \geq d[u] \) for child \(s \) of \(u \)
DFS-VISIT(u)
1. VisitVertex(u)
2. Color[u] ← GRAY
3. Time ← Time + 1
4. d[u] ← Time
5. for each v ∈ Adj[u] do
6. VisitEdge(u, v)
7. if (v ≠ π[u]) then
8. if (color[v] = WHITE) then
 9. π[v] ← u
10. DFS-VISIT(v)
11. Color[u] ← BLACK
12. Low[u] ← min { Low[u], Low[v] } // back edge
13. else Low[u] = min { Low[u], d[v] } // back edge

BCC(G, u) // Compute the biconnected components of G
// starting from vertex u
1. Color[u] ← GRAY
2. Low[u] ← d[u] ← Time ← Time + 1
3. Put u on stack S
4. for each v ∈ Adj[u] do
 5. if (v ≠ π[u]) and (color[v] ≠ BLACK) then
 6. if (TopOfStack(S) ≠ u) then put u on stack S
 7. Put edge (u, v) on stack S
 8. if (color[v] = WHITE) then
 9. π[v] ← u
 10. BCC(G, v)
 11. if (Low[v] ≥ d[u]) then // u is an articulation point
 12. // Output next biconnected component
 13. Pop S until u is reached
 14. Push u back on S
 15. Low[u] = min { Low[u], Low[v] }
 16. else Low[u] = min { Low[u], d[v] } // back edge
Correctness and Complexity

- Theorem: A graph is biconnected if and only if it has no articulation points.
- BCC finds all articulation points:
 - If $\text{Low[child(u)]} \geq u$, then u is an articulation point.
- Correctness follows from theoretical principles.
- Time and Space complexity $= O(n+m)$ Why?
How to detect bridges

- An edge e of G is a bridge if and only if it does not lie on any simple cycle of G
 - Use DFS, where every edge is a tree edge or back edge
 - If edge e is a back edge?
 - It cannot be a bridge! Why?
 - If edge e is a tree edge?
 - Let $e = (u,v)$ such that u is the parent of v
 - Edge e is a bridge if $\text{Low}[v] = d[v]$
Correctness and Complexity

- Correctness follows from the theoretical principles
- Time and Space complexity to detect all bridges in the graph
 - $O(n+m)$ Why?