Relax Step
All Pairs Shortest Path Algorithm

- Invoke Dijkstra’s SSSP algorithm \(n \) times.
- Or use dynamic programming. How?
First Variant

- Let $D[i,j,m] = \text{length of the shortest path from } I \text{ to } j \text{ that uses at most } m \text{ edges}$
- $D[i,j,0] = ?; D[i,j,1] = ?$
- Recurrence Relation

$$l_{ij}^{(m)} = \min \left\{ l_{ij}^{(m-1)}, \min_{1 \leq k \leq n} \left(l_{ik}^{(m-1)} + w_{kj} \right) \right\}$$

$$= \min_{1 \leq k \leq n} \left(l_{ik}^{(m-1)} + w_{kj} \right).$$
Second Variant

- $C[i,j,k] = \text{length of shortest path from } i \text{ to } j \text{ that only uses vertices from } \{1, 2, \ldots, k\}$

\[
d_{ij}^{(k)} = \begin{cases}
 w_{ij} & \text{if } k = 0, \\
 \min d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} & \text{if } k \geq 1.
\end{cases}
\]
Figure 14.38
Worst-case running times of various graph algorithms

<table>
<thead>
<tr>
<th>Type of Graph Problem</th>
<th>Running Time</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unweighted</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>Weighted, no negative edges</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>Weighted, negative edges</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>Weighted, acyclic</td>
<td>$O(</td>
<td>E</td>
</tr>
</tbody>
</table>
Figure 25.4 The sequence of matrices $D^{(i)}$ and $\Pi^{(i)}$ computed by the Floyd-Warshall algorithm for the graph in Figure 25.1.
All Pairs Shortest Path

Floyd-Warshall(W)

1 \(n = W.\text{rows} \)
2 \(D^{(0)} = W \)
3 \(\text{for } k = 1 \text{ to } n \)
4 \(\text{let } D^{(k)} = d_{ij}^{(k)} \) be a new \(n \times n \) matrix
5 \(\text{for } i = 1 \text{ to } n \)
6 \(\text{for } j = 1 \text{ to } n \)
7 \(d_{ij}^{(k)} = \min \ d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \)
8 \(\text{return } D^{(n)} \)
Main loops of Floyd-Warshall’s algorithm

\[
\begin{align*}
\text{for } k & \leftarrow 1 \text{ to } n \\
\text{do for } i & \leftarrow 1 \text{ to } n \\
\text{do for } j & \leftarrow 1 \text{ to } n \\
\text{do if } c_{ij} & > c_{ik} + c_{kj} \\
\text{then } c_{ij} & \leftarrow c_{ik} + c_{kj}
\end{align*}
\]
Time Complexity

- Time Complexity = $O(n^3)$
- Improvements are possible with faster matrix multiplication algorithm.
Connectivity & Biconnectivity
Connectivity & Biconnectivity: Undirected Case

- Graph is **connected** if there exists a path between every pair of vertices.
- A tree is **minimally connected**
- Removing an edge/vertex from a **minimally connected** graph makes it disconnected.

- Graph is **biconnected** if there exists 2 or more **disjoint** paths between every pair of vertices.
- A cycle is **minimally biconnected**
- You need to remove at least 2 vertices/edges to disconnect a **minimally biconnected** graph.
- Every node lies on a cycle
Subgraph $G'(V',E')$ is a **connected component** of $G(V,E)$ if V' is a maximal subset of V that induces a connected subgraph.

If a graph is not connected, it can be decomposed into connected components.

Subgraph $G'(V',E')$ is a **biconnected component** of $G(V,E)$ if V' is a maximal subset of V that induces a biconnected subgraph.

If a graph is not biconnected, it can be decomposed into biconnected components.
What does DFS do for us?
Testing for Biconnectivity

- An **articulation point** is a vertex whose removal disconnects graph.
- A **bridge** is an edge whose removal disconnects graph.
- **Claim:** If a graph is not biconnected, it must have an articulation point. **Proof?**
- So how do we look for articulation points (and bridges)?
 - **Use DFS**
Biconnectivity Principles

- If root of DFS tree has at least 2 children, it’s an articulation point
 - Easy to check!
- Non-root vertex u is an articulation point of G if and only if u has a child v such that there is no back edge from v or any descendant of v to a proper ancestor of u
- Compute $\text{Low}[x] =$ lowest numbered vertex reachable from some descendant of x (default is $d[x]$)
- Vertex u is an articulation point if $\text{Low}[s] \geq d[u]$ for child s of u
BCC(G, u) // Compute the biconnected components of G
 // starting from vertex u
1. Color[u] ← GRAY
2. Low[u] ← d[u] ← Time ← Time + 1
3. Put u on stack S
4. for each v ∈ Adj[u] do
5. if (v ≠ π[u]) and (color[v] ≠ BLACK) then
6. if (TopOfStack(S) ≠ u) then put u on stack S
7. Put edge (u,v) on stack S
8. if (color[v] = WHITE) then
9. π[v] ← u
10. BCC(G, v)
11. if (Low[v] >= d[u]) then // u is an articul. pt.
12. // Output next biconnected component
13. Pop S until u is reached
14. Push u back on S
15. else
16. Low[u] = min { Low[u], Low[v] } // back edge
17. color[u] ← BLACK
18. F[u] ← Time ← Time + 1

DFS-VISIT(u)
1. VisitVertex(u)
2. Color[u] ← GRAY
3. Time ← Time + 1
4. d[u] ← Time
5. for each v ∈ Adj[u] do
6. VisitEdge(u,v)
7. if (v ≠ π[u]) then
8. if (color[v] = WHITE) then
9. π[v] ← u
10. DFS-VISIT(v)
11. color[u] ← BLACK
12. F[u] ← Time ← Time + 1
Correctness and Complexity

- Correctness follows from the theoretical principles
- Time and Space complexity = $O(n+m)$ Why?
How to detect bridges

- An edge e of G is a bridge if and only if it does not lie on any simple cycle of G
 - Use DFS, where every edge is a tree edge or a back edge
 - If edge e is a back edge?
 - It cannot be a bridge!
 - If edge e is a tree edge?
 - Let $e = (u,v)$ such that u is the parent of v
 - E is a bridge if $\text{Low}[v] = d[v]$
Correctness and Complexity

- Correctness follows from the theoretical principles
- Time and Space complexity to detect all bridges in the graph
 - $O(n+m)$ Why?