SPRING 2002: COT 6405 ANALYSIS OF ALGORITHMS

[HOMEWORK 1; DUE FEB 5 IN CLASS]

General submission guidelines and policies: Read the attached handout on this topic.

Problems

7.

10.

11.

12.

13.

The first phase of heapsort involves building a heap. The second phase involves sorting
from a heap, for which we know an algorithm with time complexity O(nlogn). Is it
possible for another comparison-based algorithm to reduce this time complexity to
O(n)? Give reasons for your answer.

A sorting algorithm is said to be stable if the relative order of any equal items in the
input list is not changed in the output list. For each of the following sorting algorithms,
state which ones are not stable by using a simple example: Insertion Sort, Selection
Sort, Bubble Sort, Merge Sort, Quick Sort, Heap Sort, Counting Sort, Bucket Sort,
Radix Sort.

(Extra Credit) You are given a set of n elements to sort using some comparison-
based sorting algorithm. However, the input has a large number of duplicates, and the
number of unique elements in the list are only & (not a constant). We would like to
know if the lower bound of O(nlogn) on the time complexity can be bettered. Prove a
reasonable lower bound on the time complexity. You may need to define some notation.

Design a simple algorithm for the above problem. Analyze its time complexity.

Given a set of n tennis players, design a set of matches to be organized to decide the
champion and the runner-up in the set. You may assume that, unlike in the real world
of tennis, a match between player i and j produces the same result, regardless of how
many times the match is repeatedly played. The champion is a player who cannot be
defeated by any other player. The runner-up is a player who can defeat all the other
players except the champion.

A set of n people (numbered 1 through n) have varying amounts of assets (money in
the bank) and liabilities (total debts). The worth of a person is measured by the assets
minus the liabilities. A recent law allows them to form groups and pool their worth.
The worth of a group is simply the sum of the worth of its individuals. Design an
algorithm that computes the group with the maximum worth.

Now design a second algorithm for the above problem assuming a new law that states
that if individuals numbered ¢ and j are part of a group pooling their worth, then
that group must also include all individuals numbered between ¢ and j. Analyze your
algorithm. Argue why you think you can or cannot design a more efficient algorithm.
Note that the naive O(n?)-time algorithm will not fetch much credit.



