SPRING 2002: COT 6405 Analysis of Algorithms

[Homework 3; Due Mar 7 in my office before class]

Problems

20 [Problem 14-1] Suppose that we wish to keep track of a point of maximum overlap in a set of intervals - a point that has the largest number of intervals in the database overlapping it.
(a) Show that there will always be a point of maximum overlap which is an endpoint of one of the segments.
(b) Design a data structure that efficiently supports the operations Interval-Insert, Interval-Delete, and Find-POM, which returns a point of maximum overlap. (Hint: Keep a red-black tree of all endpoints. Associate a value of +1 with each left endpoint, and a value of -1 for each right endpoint. Augment each node of the tree with some extra information to maintain the point of maximum overlap.)

21 Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions are $\langle 5,10,3,12,5,50,6\rangle$. [Problem 15.2-1]
22 Determine an LCS of $\langle 1,0,0,1,0,1,0,1\rangle$ and $\langle 0,1,0,1,1,0,1,1,0\rangle$. [Problem 15.4-1]
23 [Problem 15.5-2] Determine the cost and structure of an optimal binary search tree for a set of $n=7$ keys with the following probabilities:

i	0	1	2	3	4	5	6	7
p_{i}		0.04	0.06	0.08	0.02	0.10	0.12	0.14
q_{i}	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05

24 Professor Apollo suggests that a faster algorithm to solve the optimal triangulation problem might exist for the special case in which the weight of a triangle is its area. Is the professor's intuition accurate? (Hint: very easy.)
25 [Problem 16.3-2] What is an optimal Huffman code for the following set of frequencies, based on the first 8 Fibonacci numbers?

$$
a: 1 \quad b: 1 \quad c: 2 \quad d: 3 \quad e: 5 \quad f: 8 \quad g: 13 \quad h: 21
$$

26 Solve any one of the following problems from your text: (a) Problem 15-1 (Bitonic euclidean traveling-salesperson problem), (b) Problem 15-3 (Edit distance), or (c) Problem 15-5 (Viterbi algorithm). [Note: For those of you with old editions of the text, you may consider looking at the new edition since it has more details on these problems.]

