
SPRING 2002: COT 6405 Analysis of Algorithms

[Homework 4; Due Apr 4 in my office before class]

Problems

27. Given below is an algorithm for checking whether a given connected, G(V,E) undi-
rected graph has an odd length cycle. The algorithm is a simple modification of DFS
and it is called as ODDCycle-Visit(G, 1,+1). Note that instead of assigning DFS
numbers to vertices, it assigns a label of +1 or −1 to vertices.

ODDCycle-Visit(G, u, b)
Comment: DFS in graph G from vertex u
1 color[u]← gray
2 label[u]← b
3 for each vertex v ∈ Adj[u] do
4 if color[v] = white then
5 π[v]← u
6 ODDCycle-Visit(G, v, −b)
7 else if label[u] = label[v] then
8 Print ”Odd Cycle Exists”; Stop
9 color[u]← black

Now analyze the time complexity of the above algorithm. Then prove that it is correct
by proving the following four claims (Convince yourself that the following four claims
are enough to prove correctness.):

Claim 1: If e = (u, v) is a tree edge of the DFS tree, then label[u] 6= label[v].

Claim 2: If the above algorithm encounters an edge e = (u, v) with label[u] =
label[v], then e is a back edge of the DFS tree, and this edge along with the
unique path in the tree from u to v forms an odd cycle.

Claim 3: If there exists an edge e = (u, v) with label[u] = label[v], then the algorithm
will find it.

Claim 4: If there exists an odd cycle in G, then there must be two adjacent vertices
with the same label, i.e., there must be an edge e = (u, v) with label[u] = label[v].

28. The adjacency list representation consists of n lists, one for each vertex. This is usually
implemented as a linked list of “edge” records. Sorting one of these n lists can be done
in O(n) time using bucket sort (with n buckets). So it is trivial to sort all the n
lists in O(n2) time. Assuming the adjacency list representation, design a linear-time
(O(m+n)) algorithm to sort each of the n adjacency lists of a given undirected graph
G(V,E). Hint: Use radix sort with n buckets.

29. Just as in the case of an undirected graph, the adjacency list representation for a
directed graph also consists of n linked lists of “edge” records. For each directed edge
of the form e = (vi, vj), which is directed from vi to vj, the list Adj[i] contains one



edge record containing the source index i and the destination index j. For each edge
e = (vi, vj), we refer to the edge e′ = (vj, vi) as its partner edge, if it exists. In general,
for a given edge e, it takes O(n) time to locate its partner edge (or even to know if it
exists), unless we can store in each edge record a pointer to the record of its partner
edge. Note that storing the index in the record is not sufficient to locate the partner
edge. Design a linear-time (O(m + n)) algorithm so that each edge record contains a
pointer to its partner edge (make it NULL if it does not exist). Assume that such a field
already exists in each edge record (called PartnerEdge), initialized to NULL. Hint: It
helps to use the algorithm from the previous problem and sort each of the adjacency
lists first.

30. Given a weighted undirected graph G with non-negative edge weights, if the edge
weights are all increased by a positive additive constant, can the minimum spanning
tree change? Can the output of Dijkstra’s algorithm change for some (fixed) start
vertex s? What if it is decreased by a positive constant? What if the edge weights are
all multiplied by a positive constant? Give (very) simple examples, if you claim that
they can change.

31. (Extra Credit) Design a O(log n)-time algorithm for the problems from the midterm
exam. Remember that the problem was to design an efficient algorithm that takes as
input the two order-statistic trees TA and TB (for two sets A and B) and computes the
median of the elements in the set A ∪ B. You may assume that there are no common
elements in the two sets.


