Psychic Assist Hotline

- Ms. Cleo gives me 15 numbers and promises me that at least 4 will appear in Saturday's FL Lottery.
- How many tickets do I need to buy to guarantee at least one ticket with at least 3 correct numbers?
- FIVE!!! (if you assume that numbers come from 1 through 44).

Psychic Problem

- Initialize all k-sets as "uncovered".
- While (there is a "uncovered" k -set)
- Select a ticket that contains it
- Update the set of "covered" k-sets.

Evolution of Data Structures

- Complex problems require complex data structures.
- Simple data types \rightarrow Lists.
- Applications of lists include: students roster, list of voters, grocery list, list of transactions, etc.
- Array implementation of list: random access.
- Need for list "operations" arose - "Static" vs. "dynamic" lists. "Storing" items in list vs. "Maintaining" items in list.
- Lot of research on "Sorting" and "Searching".
- "Inserting" in a specified location in a list caused the following evolution: Array implementation \rightarrow Linked list implementation.
- Other linear structures e.g., stacks, queues, etc.

Evolution of Data Structures

- Trees made hierarchical organization of data easy to handle. Applications of trees: administrative hierarchy in a business set up, storing an arithmetic expression, organization of the functions calls of a recursive program, etc.
- Search trees (e.g., BST) were designed to make search and retrieval efficient in trees. A BST may not allow fast search or retrieval, if it is very unbalanced, since the time complexities of the operations depended on the height of the tree.
- Graphs generalize trees; model more general networks.
- Abstract data types. Advantages include: Encapsulation of data and operations, hiding of unnecessary details, localization and debugging of errors, ease of use since interface is clearly specified, ease of program development, etc.

Solving Recurrence Relations

Page 62, [CLR]

Recurrence; Cond	Solution
$T(n)=T(n-1)+O(1)$	$T(n)=O(n)$
$T(n)=T(n-1)+O(n)$	$T(n)=O\left(n^{2}\right)$
$T(n)=T(n-c)+O(1)$	$T(n)=O(n)$
$T(n)=T(n-c)+O(n)$	$T(n)=O\left(n^{2}\right)$
$T(n)=2 T(n / 2)+O(n)$	$T(n)=O(n \log n)$
$\begin{gathered} T(n)=a T(n / b)+O(n) \\ a=b \end{gathered}$	$T(n)=O(n \log n)$
$T(n)=a T(n / b)+O(n) ;$	$T(n)=O(n)$
$\begin{gathered} \hline \hline T(n)=a T(n / b)+f(n) ; \\ f(n)=O\left(n^{\left.\log _{b} a-\epsilon\right)}\right. \end{gathered}$	$T(n)=O(n)$
$\begin{gathered} T(n)=a T(n / b)+f(n) ; \\ f(n)=O\left(n^{\log _{b} a}\right) \end{gathered}$	$T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$
$\begin{gathered} T(n)=a T(n / b)+f(n) ; \\ f(n)=\Theta(f(n)) \\ a f(n / b) \leq c f(n) \end{gathered}$	$T(n)=\Omega\left(n^{\log _{b} a} \log n\right)$

Sorting Algorithms

- Selection Sort
- Insertion Sort
- Bubble Sort
- Shaker Sort
- Shell Sort
- Merge Sort
- Heap Sort
- Quick Sort
- Bucket \& Radix Sort
- Counting Sort

Algorithm Invariants

- Selection Sort
- iteration k : the k smallest items are in correct location.
- Insertion Sort
- iteration k : the first k items are in sorted order.
- Bubble Sort
- In each pass, every item that does not have a smaller item after it, is moved as far up in the list as possible.
- Iteration k : k smallest items are in the correct location.
- Shaker Sort
- In each odd (even) numbered pass, every item that does not have a smaller (larger) item after it, is moved as far up (down) in the list as possible.
- Iteration k : the $\mathrm{k} / 2$ smallest and largest items are in the correct location.

Algorithm Invariants (Cont'd)

- Merge (many lists)
- Iteration k : the k smallest items from the lists are merged.
- Heapify
- Iteration with $\mathrm{i}=\mathrm{k}$: Subtrees with roots at indices k or larger satisfy the heap property.
- HeapSort
- Iteration k : Largest k items are in the right location.
- Partition (two sublists)
- Iteration k (with pointers at i and j): items in locations [1..I] (locations [i+1..j]) are at least as small (large) as the pivot.

Sorting Algorithms

- Number of Comparisons
- Number of Data Movements
- Additional Space Requirements

QuickSort(A, p, r)

if $(\mathrm{p}<\mathrm{r})$ then

$\mathrm{q}=\operatorname{Partition}(\mathrm{A}, \mathrm{p}, \mathrm{r})$
QuickSort(A, p, q-1)
QuickSort(A, q+1, r)

Partition(A, p, r)

Page 146, CLR

$$
\begin{aligned}
& x=A[r] \\
& i=p-1 \\
& \text { for } j=p \text { to } r-1 \text { do } \\
& \quad \text { if } A[j]<=x) \text { then } \\
& \quad i++ \\
& \quad \text { exchange(A[i], } A[j]) \\
& \text { exchange(A[i+1], } A[r]) \\
& \text { return } i+1
\end{aligned}
$$

Figure 8.5

Shellsort after each pass if the increment sequence is $\{1,3,5\}$

ORIGINAL	81	94	11	96	12	35	17	95	28	58	41	75	15
After 5-sort	35	17	11	28	12	41	75	15	96	58	81	94	95
After 3-sort	28	12	11	35	15	41	58	17	94	75	81	96	95
After 1-sort	11	12	15	17	28	35	41	58	75	81	94	95	96

ShellSort

public static void shellsort(Comparable [] a)
\{
for (int gap $=$ a.length $/ 2$; gap >0;

$$
\text { gap = gap ==2? } 1:(\text { int })(\text { gap } / 2.2))
$$

for (int $\mathrm{i}=$ gap; $\mathrm{i}<$ a.length; $\mathrm{i}++$)
\{
Comparable tmp $=\mathrm{a}[\mathrm{i}] ;$ int $\mathrm{j}=\mathrm{i}$;
for ($; \mathrm{j}>=$ gap \& \& tmp.compareTo($\mathrm{a}[\mathrm{j}$ - gap $]$) <0; $\mathrm{j}-=$ gap $)$ $\mathrm{a}[\mathrm{j}]=\mathrm{a}[\mathrm{j}$ - gap];
$a[j]=t m p ;$
\}
\}

Sorting Algorithms

- Selection Sort
- Insertion Sort
- Bubble Sort
- Shaker Sort
- Merge Sort
- Heap Sort
- Quick Sort
- Bucket \& Radix Sort
- Counting Sort

