
1/14/03 Lecture 2 1

Psychic Assist Hotline
• Ms. Cleo gives me 15 numbers and

promises me that at least 4 will appear in
Saturday’s FL Lottery.

• How many tickets do I need to buy to
guarantee at least one ticket with at least 3
correct numbers?

• FIVE!!! (if you assume that numbers come
from 1 through 44).

1/14/03 Lecture 2 2

Psychic Problem
• Initialize all k-sets as “uncovered”.
• While (there is a “uncovered” k-set)

– Select a ticket that contains it
– Update the set of “covered” k-sets.

1/14/03 Lecture 2 3

Evolution of Data Structures
• Complex problems require complex data structures.
• Simple data types → Lists.
• Applications of lists include: students roster, list of

voters, grocery list, list of transactions, etc.
• Array implementation of list: random access.
• Need for list “operations” arose – “Static” vs.

“dynamic” lists. “Storing” items in list vs. “Maintaining”
items in list.

• Lot of research on “Sorting” and “Searching”.
• “Inserting” in a specified location in a list caused the

following evolution: Array implementation → Linked
list implementation.

• Other linear structures e.g., stacks, queues, etc.

1/14/03 Lecture 2 4

Evolution of Data Structures
• Trees made hierarchical organization of data easy to handle.

Applications of trees: administrative hierarchy in a business set
up, storing an arithmetic expression, organization of the
functions calls of a recursive program, etc.

• Search trees (e.g., BST) were designed to make search and
retrieval efficient in trees. A BST may not allow fast search or
retrieval, if it is very unbalanced, since the time complexities of
the operations depended on the height of the tree.

• Graphs generalize trees; model more general networks.
• Abstract data types. Advantages include: Encapsulation of data

and operations, hiding of unnecessary details, localization and
debugging of errors, ease of use since interface is clearly
specified, ease of program development, etc.

1/14/03 Lecture 2 5

1/14/03 Lecture 2 6

Sorting Algorithms
• Selection Sort
• Insertion Sort
• Bubble Sort
• Shaker Sort
• Shell Sort
• Merge Sort
• Heap Sort
• Quick Sort

• Bucket & Radix Sort
• Counting Sort

1/14/03 Lecture 2 7

Algorithm Invariants
• Selection Sort

• iteration k: the k smallest items are in correct location.

• Insertion Sort
• iteration k: the first k items are in sorted order.

• Bubble Sort
• In each pass, every item that does not have a smaller item after

it, is moved as far up in the list as possible.
• Iteration k: k smallest items are in the correct location.

• Shaker Sort
• In each odd (even) numbered pass, every item that does not

have a smaller (larger) item after it, is moved as far up (down)
in the list as possible.

• Iteration k: the k/2 smallest and largest items are in the correct
location.

1/14/03 Lecture 2 8

Algorithm Invariants (Cont’d)
• Merge (many lists)

– Iteration k: the k smallest items from the lists are
merged.

• Heapify
– Iteration with i = k: Subtrees with roots at indices k or

larger satisfy the heap property.
• HeapSort

– Iteration k: Largest k items are in the right location.
• Partition (two sublists)

– Iteration k (with pointers at i and j): items in locations
[1..I] (locations [i+1..j]) are at least as small (large) as
the pivot.

1/14/03 Lecture 2 9

Sorting Algorithms
• Number of Comparisons
• Number of Data Movements
• Additional Space Requirements

1/14/03 Lecture 2 10

QuickSort(A, p, r)
if (p < r) then

q = Partition(A, p, r)
QuickSort(A, p, q-1)
QuickSort(A, q+1, r)

Partition(A, p, r)
x = A[r]
i = p-1
for j = p to r-1 do

if A[j] <= x) then
i++
exchange(A[i], A[j])

exchange(A[i+1], A[r])
return i+1

Page 146, CLR

1/14/03 Lecture 2 11

Figure 8.5
Shellsort after each pass if the increment sequence is {1, 3, 5}

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

1/14/03 Lecture 2 12

ShellSort
public static void shellsort(Comparable [] a)

{
for(int gap = a.length / 2; gap > 0;

gap = gap == 2 ? 1 : (int) (gap / 2.2))
for(int i = gap; i < a.length; i++)
{

Comparable tmp = a[i];
int j = i;

for(; j >= gap && tmp.compareTo(a[j - gap]) < 0; j -= gap)
a[j] = a[j - gap];

a[j] = tmp;
}

}

1/14/03 Lecture 2 13

Sorting Algorithms
• Selection Sort
• Insertion Sort
• Bubble Sort
• Shaker Sort

• Merge Sort
• Heap Sort
• Quick Sort

• Bucket & Radix Sort
• Counting Sort

	Psychic Assist Hotline
	Psychic Problem
	Evolution of Data Structures
	Evolution of Data Structures
	Sorting Algorithms
	Algorithm Invariants
	Algorithm Invariants (Cont’d)
	Sorting Algorithms
	ShellSort
	Sorting Algorithms

