
01/28/03 Lecture 6 1

k-Selection; Median

• Select the k-th smallest item in the list
• Naïve Solution

– Sort;
– pick the k-th smallest item in sorted list.

O(n log n) time complexity
• Randomized solution: Average case O(n)
• Improved Solution: worst case O(n)

01/28/03 Lecture 6 2

QuickSort(A, p, r)
if (p < r) then

q = Partition(A, p, r)
QuickSort(A, p, q)
QuickSort(A, 1+1, r)

Partition(A, p, r)
x = A[p]
i = p-1
j = r+1
while TRUE do

repeat
j- -

until (A[j] <= x)
repeat

i++
until (A[i] >= x)
if (i < j) SWAP(A[i], A[j])
else return j

01/28/03 Lecture 6 3

Partition Procedure Revisited

• The Partition code can be rewritten so that it
accepts another parameter, namely, the pivot
value. Let’s call this new variation as PivotPartition.

• This change does not affect its time complexity.
• RandomizedPartition as used in RandomizedSelect

picks the pivot uniformly at random from among
the elements in the list to be partitioned.

01/28/03 Lecture 6 4

Randomized Selection

RandomizedSelect(A, p, r, i)
if (p = r) then

return A[p]
q = RandomizedPartition(A, p, r)
k = q – p + 1
if (i <= k)

return RandomizedSelect(A, p, q, i)
else

return RandomizedSelect(A, q+1, r, i-k)

01/28/03 Lecture 6 5

Randomized Selection: Rewritten

RandomizedSelect(A, p, r, i)
if (p = r) then

return A[p]
Pivot = A[random(p,r)]
q = PivotPartition(A, p, r, Pivot)
k = q – p + 1
if (i <= k)

return RandomizedSelect(A, p, q, i)
else

return RandomizedSelect(A, q+1, r, i-k)

01/28/03 Lecture 6 6

k-Selection & Median: Improved Algorithm

• Start with initial array

01/28/03 Lecture 6 7

k-Selection & Median: Improved Algorithm(Cont’d)

• Use median of medians as pivot

• T(n) < O(n) + T(n/5) + T(3n/4)

01/28/03 Lecture 6 8

Improved Selection

ImprovedSelect(A, p, r, i)
if (p = r) then

return A[p]
else N = r – p + 1
Partition A[p..r] into subsets of 5 elements and collect all
the medians of the subsets in B[1..(N/5)].
Pivot = ImprovedSelect (B, 1, N/5, N/10)
q = PivotPartition (A, p, r, Pivot)
k = q – p + 1
if (i <= k)

return ImprovedSelect(A, p, q, i)
else

return ImprovedSelect(A, q+1, r, i-k)

01/28/03 Lecture 6 9

Upper & Lower Bounds

• Algorithm A solves problem P if it terminates &
gives the correct output on every possible input.

• Algorithm A solving problem P has time complexity
f(n) if it takes time at most f(n) for every input of
length n.

• U(n) is an upper bound on the time complexity of P,
if there exists an algorithm A that solves P and
has time complexity U(n).

• L(n) is a lower bound on the time complexity of P,
if there exists NO algorithm that solves P and has
time complexity asymptotically less than L(n).

01/28/03 Lecture 6 10

Upper & Lower Bounds for Maximum

• Naïve Algorithm A solves the Maximum problem, because it
terminates in n iterations for every possible input of length
n and outputs the correct maximum.

• Naïve Algorithm A has time complexity O(n).
• O(n) is an upper bound on the time complexity of the

maximum problem.
• (n-1) is a lower bound on the time complexity of the

maximum problem, because there exists NO algorithm that
solves it with less than n-1 comparisons.

• WHY? In 1 comparison, at most 1 item is eliminated from
being the maximum. How many to eliminate?

• Therefore, no matter how smart you are you cannot design
an algorithm that solves the Maximum problem in less than
n-1 comparisons on all inputs of length n.

01/28/03 Lecture 6 11

Upper Bound on Sorting n items

• O(n log n) is the upper bound for sorting.
• WHY?

– HeapSort
– MergeSort

• What about QuickSort?
– O(n2) in the worst case!

01/28/03 Lecture 6 12

Lower Bound for Sorting: Decision Tree Model

• The decision tree model models all comparison-based
algorithms that solve the sorting problem. These algorithms
perform no other “algebraic” operations on input values.
They may perform data movements & other statements.

• Imagine a binary tree that models the algorithm, where
– each node corresponds to a comparison
– the edges to the children correspond to the two outcomes of

the comparison: YES/NO
– Leaves correspond to the output. WHAT IS THE OUTPUT?

• Decision tree for InsertionSort on 4 items?
• What can we say about such decision trees?
• Given an input, the algorithm follows a path from the root to

a leaf.

01/28/03 Lecture 6 13

Lower Bound for Sorting: Cont’d

• Leaves correspond to outputs.
• Paths correspond to a path followed on a specific

input. Time complexity = height of decision tree.
• Different input orders must force different paths

or else the output will end up being the same,
giving rise to incorrect sorted orders.

• Therefore number of leaves is at least as large as
the number of different input orders.
– HOW MANY?
– n!

• Height of the decision tree is at least log(n!).
Hence lower bound is O(log(n!)) = O(n log n)

	k-Selection; Median
	Partition Procedure Revisited
	Randomized Selection
	Randomized Selection: Rewritten
	k-Selection & Median: Improved Algorithm
	k-Selection & Median: Improved Algorithm(Cont’d)
	Improved Selection
	Upper & Lower Bounds
	Upper & Lower Bounds for Maximum
	Upper Bound on Sorting n items
	Lower Bound for Sorting: Decision Tree Model
	Lower Bound for Sorting: Cont’d

