k-Selection; Median

Select the k-th smallest item in the list

Naive Solution
- Sort;
- pick the k-th smallest item in sorted list.
O(n log n) time complexity
* Randomized solution: Average case O(n)
+ Improved Solution: worst case O(n)

01/28/03 Lecture 6



QuickSort(A, p, 1)
if (p <r) then
q = Partition(A, p, 1)
QuickSort(A, p, q)
QuickSort(A, 1+1, 1)

Partition(A, p, r)
x = Alp]
1=p-1
j=r+l
while TRUE do
repeat
j- -
until (A[j] <=x)
repeat
1++
until (A[i1] >= x)
if (1 <j) SWAP(A[i], A[j])
else return j

01/28/03 Lecture 6



Partition Procedure Revisited

- The Partition code can be rewritten so that it
accepts another parameter, namely, the pivot
value. Let's call this new variation as PivotPartition.

+ This change does not affect its time complexity.

» RandomizedPartition as used in RandomizedSelect
picks the pivot uniformly at random from among
the elements in the list to be partitioned.

01/28/03 Lecture 6



Randomized Selection

RandomizedSelect(A, p, r, i)
if (p=r) then
return Alp]
q = RandomizedPartition(A, p, r)
k=q-p+1
if (i <= k)
return RandomizedSelect(A, p, q, i)
else

return RandomizedSelect(A, g+1, r, i-k)

01/28/03 Lecture 6



Randomized Selection: Rewritten

RandomizedSelect(A, p, r, i)
if (p=r) then
return A[p]
Pivot = A[random(p,r)]
q = PivotPartition(A, p, r, Pivot)
k=q-p+1
if (i <= k)
return RandomizedSelect(A, p, q, i)
else
return RandomizedSelect(A, g+1, r, i-k)

01/28/03 Lecture 6



k-Selection & Median: Improved Algorithm

Start with initial array




k-Selection & Median: Improved Algorithm(Cont’d)

* Use median of medians as pivot

<

- T(n) < O(n) + T(n/5) + T(3n/4)

01/28/03 Lecture 6



Improved Selection

ImprovedSelect(A, p, r, i)
if (p=r) then
return A[p]
elseN=r-p+1
Partition A[p..r] into subsets of 5 elements and collect all
the medians of the subsets in B[1..(N/5)].
Pivot = ImprovedSelect (B, 1, IN/51,IN/101)
q = PivotPartition (A, p, r, Pivot)
k=q-p+1
if (i <= k)
return ImprovedSelect(A, p, q, i)
else
return ImprovedSelect(A, g+1, r, i-k)

01/28/03 Lecture 6




Upper & Lower Bounds

* Algorithm A solves problem P if it terminates &
gives the correct output on every possible input.

* Algorithm A solving problem P has time complexity
f(n) if it takes time at most f(n) for every input of
length n.

» U(n) is an upper bound on the time complexity of P,
if there exists an algorithm A that solves P and
has time complexity U(n).

* L(n) is a lower bound on the time complexity of P,
if there exists NO algorithm that solves P and has
time complexity asymptotically less than L(n).

01/28/03 Lecture 6 9



Upper & Lower Bounds for Maximum

Naive Algorithm A solves the Maximum problem, because it
tferminates in n iterations for every possible input of length
n and outputs the correct maximum.

Naive Algorithm A has time complexity O(n).

O(n) is an upper bound on the time complexity of the
maximum problem.

(n-1) is a lower bound on the time complexity of the
maximum problem, because there exists NO algorithm that
solves it with less than n-1 comparisons.

WHY? In 1 comparison, at most 1 item is eliminated from
being the maximum. How many to eliminate?

Therefore, no matter how smart you are you cannot design
an algorithm that solves the Maximum problem in less than
n-1 comparisons on all inputs of length n.

01/28/03 Lecture 6



Upper Bound on Sorting n items

* O(n log n) is the upper bound for sorting.

WHY?
- HeapSort
- MergeSort

What about QuickSort?
- O(n?) in the worst casel

01/28/03 Lecture 6

11



Lower Bound for Sorting: Decision Tree Model

The decision tree model models all comparison-based
algorithms that solve the sorting problem. These algorithms
perform no other "algebraic” operations on input values.
They may perform data movements & other statements.
Imagine a binary tree that models the algorithm, where

- each node corresponds to a comparison

- the edges to the children correspond to the two outcomes of
the comparison: YES/NO

- Leaves correspond to the output. WHAT IS THE OUTPUT?
Decision tree for InsertionSort on 4 items?
What can we say about such decision trees?

Given an input, the algorithm follows a path from the root to
a leaf.

01/28/03 Lecture 6 12




Lower Bound for Sorting: Cont’d

* Leaves correspond to outputs.

» Paths correspond to a path followed on a specific
input. Time complexity = height of decision tree.

Different input orders must force different paths
or else the output will end up being the same,
giving rise to incorrect sorted orders.

* Therefore number of leaves is at least as large as
the number of different input orders.
- HOW MANY?
- nl
Height of the decision tree is at least log(n!).
Hence lower bound is O(log(n!)) = O(n log n)

01/28/03 Lecture 6 13



	k-Selection; Median
	Partition Procedure Revisited
	Randomized Selection
	Randomized Selection: Rewritten
	k-Selection & Median: Improved Algorithm
	k-Selection & Median: Improved Algorithm(Cont’d)
	Improved Selection
	Upper & Lower Bounds
	Upper & Lower Bounds for Maximum
	Upper Bound on Sorting n items
	Lower Bound for Sorting: Decision Tree Model
	Lower Bound for Sorting: Cont’d

