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k-Selection; Median

• Select the k-th smallest item in the list
• Naïve Solution

– Sort; 
– pick the k-th smallest item in sorted list.

O(n log n) time complexity
• Randomized solution: Average case O(n)
• Improved Solution: worst case O(n)
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QuickSort(A, p, r)
if (p < r) then

q = Partition(A, p, r)
QuickSort(A, p, q)
QuickSort(A, 1+1, r)

Partition(A, p, r)
x = A[p]
i = p-1
j = r+1
while TRUE do 

repeat 
j- -

until (A[j] <= x)
repeat 

i++
until (A[i] >= x)
if (i < j) SWAP(A[i], A[j])
else return j
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Partition Procedure Revisited

• The Partition code can be rewritten so that it 
accepts another parameter, namely, the pivot 
value. Let’s call this new variation as PivotPartition.

• This change does not affect its time complexity.
• RandomizedPartition as used in RandomizedSelect 

picks the pivot uniformly at random from among 
the elements in the list to be partitioned. 
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Randomized Selection

RandomizedSelect(A, p, r, i)
if (p = r) then

return A[p]
q = RandomizedPartition(A, p, r)
k = q – p + 1
if (i <= k)

return RandomizedSelect(A, p, q, i)
else

return RandomizedSelect(A, q+1, r, i-k)
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Randomized Selection: Rewritten

RandomizedSelect(A, p, r, i)
if (p = r) then

return A[p]
Pivot = A[random(p,r)]
q = PivotPartition(A, p, r, Pivot)
k = q – p + 1
if (i <= k)

return RandomizedSelect(A, p, q, i)
else

return RandomizedSelect(A, q+1, r, i-k)
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k-Selection & Median: Improved Algorithm

• Start with initial array
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k-Selection & Median: Improved Algorithm(Cont’d)

• Use median of medians as pivot

• T(n) < O(n)  + T(n/5) + T(3n/4)
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Improved Selection

ImprovedSelect(A, p, r, i)
if (p = r) then

return A[p]
else N = r – p + 1
Partition A[p..r] into subsets of 5 elements and collect all
the medians of the subsets in B[1..(N/5)].
Pivot = ImprovedSelect (B, 1, N/5, N/10 )
q = PivotPartition (A, p, r, Pivot)
k = q – p + 1
if (i <= k)

return ImprovedSelect(A, p, q, i)
else

return ImprovedSelect(A, q+1, r, i-k)
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Upper & Lower Bounds

• Algorithm A solves problem P if it terminates & 
gives the correct output on every possible input.

• Algorithm A solving problem P has time complexity
f(n) if it takes time at most f(n) for every input of 
length n. 

• U(n) is an upper bound on the time complexity of P, 
if there exists an algorithm A that solves P and 
has time complexity U(n). 

• L(n) is a lower bound on the time complexity of P, 
if there exists NO algorithm that solves P and has 
time complexity asymptotically less than L(n).
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Upper & Lower Bounds for Maximum

• Naïve Algorithm A solves the Maximum problem, because it 
terminates in n iterations for every possible input of length 
n and outputs the correct maximum.

• Naïve Algorithm A has time complexity O(n). 
• O(n) is an upper bound on the time complexity of the 

maximum problem. 
• (n-1) is a lower bound on the time complexity of the 

maximum problem, because there exists NO algorithm that 
solves it with less than n-1 comparisons. 

• WHY? In 1 comparison, at most 1 item is eliminated from 
being the maximum. How many to eliminate? 

• Therefore, no matter how smart you are you cannot design 
an algorithm that solves the Maximum problem in less than 
n-1 comparisons on all inputs of length n.
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Upper Bound on Sorting n items

• O(n log n) is the upper bound for sorting.
• WHY?

– HeapSort
– MergeSort

• What about QuickSort?
– O(n2) in the worst case!
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Lower Bound for Sorting: Decision Tree Model

• The decision tree model models all comparison-based
algorithms that solve the sorting problem. These algorithms 
perform no other “algebraic” operations on input values. 
They may perform data movements & other statements.

• Imagine a binary tree that models the algorithm, where 
– each node corresponds to a comparison 
– the edges to the children correspond to the two outcomes of 

the comparison: YES/NO
– Leaves correspond to the output. WHAT IS THE OUTPUT?

• Decision tree for InsertionSort on 4 items?
• What can we say about such decision trees?
• Given an input, the algorithm follows a path from the root to 

a leaf.
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Lower Bound for Sorting: Cont’d

• Leaves correspond to outputs. 
• Paths correspond to a path followed on a specific 

input. Time complexity = height of decision tree.
• Different input orders must force different paths 

or else the output will end up being the same, 
giving rise to incorrect sorted orders. 

• Therefore number of leaves is at least as large as 
the number of different input orders. 
– HOW MANY?
– n!

• Height of the decision tree is at least log(n!). 
Hence lower bound is O(log(n!)) = O(n log n)
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