
02/06/03 Lecture 9 1

RB-Tree Augmentation

• Augment x with Size(x), where
– Size(x) = size of subtree rooted at x
– Size(NIL) = 0

02/06/03 Lecture 9 2

OS-Select

OS-SELECT(x,i) //page 304
// Select the node with rank i
// in the subtree rooted at x
1. r ≠ size[left[x]]+1
2. if i = r then
3. return x
4. elseif i < r then
5. return OS-SELECT (left[x], i)
6. else return OS-SELECT (right[x], i-r)

Time Complexity O(log n)

02/06/03 Lecture 9 3

OS-Rank

OS-RANK(x,y)
// Different from text (recursive version)
// Find the rank of y in the subtree rooted at x
1 r = size[left[y]] + 1
2 if x = y then return r
3 else if (key[x] < key[y]) then
4 return OS-RANK(x,left[y])
5 else return r + OS-RANK(x,right[y])

Time Complexity O(log n)

02/06/03 Lecture 9 4

Augmenting RB-Trees

Theorem 14.1, page 309
Let f be a field that augments a red-black tree T
with n nodes, and f(x) can be computed using only
the information in nodes x, left[x], and right[x],
including f[left[x]] and f[right[x]].
Then, we can maintain f(x) during insertion and
deletion without asymptotically affecting the
O(lgn) performance of these operations.

For example,
size[x] = size[left[x]] + size[right[x]] + 1
rank[x] = ?

02/06/03 Lecture 9 5

Examples of augmenting information for RB-Trees

• Parent
• Height
• Any associative function on all previous values or

all succeeding values.
• Next
• Previous

02/06/03 Lecture 9 6

Interval Trees

• Need: Dynamic data structure to store time
intervals

• Application: Maintain schedule for set of seminars
• Operations: Insert, Delete
• Every interval j has: low[j], high[j]
• Data Structure:

– Augment RB-Tree so that it can store intervals.
– Ordering based on what key? low values? high values?

(high+low)/2 values? (high-low) values?
– Note that insert and delete are still efficient.

• New Operation: Search (find any overlapping
interval)
– Problem with Search!

02/06/03 Lecture 9 7

Augmented Information

• low, high, max
• max[x] = rightmost high value of all intervals in

subtree rooted at x
• The value max[x] of each node can be written as:

max[x] = Max { high[int[x]], max[left[x]],
max[right[x]] }

• Therefore it can be maintained efficiently under
insertions and deletions

02/06/03 Lecture 9 8

Interval-Search

INTERVAL-SEARCH (T, j)
// finds an interval in tree T that overlaps interval j,
// else return NIL.
1. x = root[T]
2. while x ≠ NIL and j does not overlap int[x] do
3. if left[x] ≠ NIL and max[left[x]]>=low[j] then
4. x = left[x]
5. else x = right[x]
6. return x

Time Complexity O(log n)

	RB-Tree Augmentation
	OS-Select
	OS-Rank
	Augmenting RB-Trees
	Examples of augmenting information for RB-Trees
	Interval Trees
	Augmented Information
	Interval-Search

