
02/18/03 Lecture 12 1

Dynamic Programming Features

• Identification of subproblems
• Recurrence relation for solution of

subproblems
• Overlapping subproblems (sometimes)
• Identification of a hierarchy/ordering of

subproblems
• Use of table to store solutions of

subproblems (MEMOIZATION)
• Optimal Substructure

02/18/03 Lecture 12 2

Longest Common Subsequence

S1 = CORIANDER CORIANDER
S2 = CREDITORS CREDITORS

Longest Common Subsequence(S1[1..9], S2[1..9]) = CRIR
Subproblems:

– LCS[S1[a..b], S2[c..d]], for all a, b, c, and d
– LCS[S1[1..i], S2[1..j]], for all i and j [BETTER]

• Recurrence Relation:
– LCS[i,j] = LCS[i-1, j-1] + 1, if S1[i] = S2[j])

LCS[i,j] = max { LCS[i-1, j], LCS[i, j-1] }, otherwise
• Table (m X n table)
• Hierarchy of Solutions?

02/18/03 Lecture 12 3

LCS Problem
LCS_Length (X, Y)
1. m length[X]
2. n Length[Y]
3. for i = 1 to m
4. do c[i, 0] 0
5. for j =1 to n
6. do c[0,j] 0
7. for i = 1 to m
8. do for j = 1 to n
9. do if (xi = yj)
10. then c[i, j] c[i-1, j-1] + 1
11. b[i, j] “ ”
12. else if c[i-1, j] c[i, j-1]
13. then c[i, j] c[i-1, j]
14. b[i, j] “↑”
15. else
16. c[i, j] c[i, j-1]
17. b[i, j] “←”
18. return

02/18/03 Lecture 12 4

LCS Example

02/18/03 Lecture 12 5

Dynamic Programming vs. Divide-&-conquer

• Divide-&-conquer works best when all subproblems are
independent. So, pick the partition that makes the algorithm
most efficient. Then simply combine their solutions to solve
the entire problem.

• Dynamic programming is needed when subproblems are
dependent and we don’t know where to partition the problem.
For example, let S1= {ALPHABET}, and S2 = {HABITAT}.
Consider the subproblem with S1′ = {ALPH}, S2′ = {HABI}.

Then, LCS (S1′, S2′) + LCS (S1-S1′, S2-S2′) ≠ LCS(S1, S2)
• Divide-&-conquer is best suited for the case when no

“overlapping subproblems” are encountered.
• In dynamic programming algorithms, we typically solve each

subproblem only once and store their solutions. But this is at
the cost of space.

02/18/03 Lecture 12 6

Dynamic programming vs Greedy

1. Dynamic Programming algorithms are less efficient than
greedy algorithms because they typically try every possible
way of partitioning the problem. However, there are many
problems that greedy methods cannot solve while dynamic
programming can. Therefore, we first try greedy algorithm.
If it fails then try dynamic programming.

2. Dynamic Programming solutions using memoization are
solved bottom-up. Dynamic Programming solutions using
recursion are solved top-down (less efficient). Solution of
the problem requires solutions of all subproblems.

3. Greedy algorithms are neither top-down nor bottom-up.
They are “incremental” solutions and rely on the assumption
that the greedy choice is a good choice. Making the greedy
choice reduces the problem to a smaller subproblem.

02/18/03 Lecture 12 7

Fractional Knapsack Problem

• Burglar’s choices:
Items: x1, x2, …, xn
Value: v1, v2, …, vn
Max Quantity: q1, q2, …, qn
Weight per unit quantity: w1, w2, …, wn
Getaway Truck has a weight limit of B.
Burglar can take “fractional” amount of any item.
How can burglar maximize value of the loot?

• Greedy Algorithm works!
Pick the maximum possible quantity of highest
value per weight item. Continue until weight limit
of truck is reached.

02/18/03 Lecture 12 8

0-1 Knapsack Problem

• Burglar’s choices:
Items: x1, x2, …, xn

Value: v1, v2, …, vn

Weight: w1, w2, …, wn

Getaway Truck has a weight limit of B.
Burglar cannot take “fractional” amount of item.
How can burglar maximize value of the loot?

• Greedy Algorithm does not work! Why?
• Need dynamic programming!

02/18/03 Lecture 12 9

0-1 Knapsack Problem

• Subproblems?
– V[j, L] = Optimal solution for knapsack problem assuming

a truck of weight limit L and choice of items from set
{1,2,…, j}.

– V[n, B] = Optimal solution for original problem
– V[1, L] = easy to compute for all values of L.

• Table of solutions?
– V[1..n, 1..B]

• Ordering of subproblems?
– Row-wise

• Recurrence Relation? [Either xj included or not]
– V[j, L] = max { V[j-1, L],

vj + V[j-1, L-wj] }

	Dynamic Programming Features
	Longest Common Subsequence
	LCS Problem
	LCS Example
	Dynamic Programming vs. Divide-&-conquer
	Dynamic programming vs Greedy
	Fractional Knapsack Problem
	0-1 Knapsack Problem
	0-1 Knapsack Problem

