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Dynamic Programming Features

• Identification of subproblems
• Recurrence relation for solution of 

subproblems
• Overlapping subproblems (sometimes)
• Identification of a hierarchy/ordering of

subproblems
• Use of table to store solutions of 

subproblems (MEMOIZATION)
• Optimal Substructure
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Longest Common Subsequence

S1 = CORIANDER CORIANDER
S2 = CREDITORS CREDITORS

Longest Common Subsequence(S1[1..9], S2[1..9]) = CRIR
Subproblems:

– LCS[S1[a..b], S2[c..d]], for all a, b, c, and d
– LCS[S1[1..i], S2[1..j]], for all i and j [BETTER]

• Recurrence Relation:
– LCS[i,j] = LCS[i-1, j-1] + 1,  if S1[i] = S2[j])

LCS[i,j] = max { LCS[i-1, j], LCS[i, j-1] }, otherwise
• Table (m X n table) 
• Hierarchy of Solutions?
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LCS Problem
LCS_Length (X, Y ) 
1. m length[X] 
2. n Length[Y] 
3. for i = 1 to m 
4. do c[i, 0] 0 
5. for j =1 to n 
6. do c[0,j] 0 
7. for i = 1 to m 
8.       do for j = 1 to n 
9.            do if ( xi = yj ) 
10.                  then c[i, j] c[i-1, j-1] + 1 
11.                       b[i, j] “ ”
12.                  else if c[i-1, j] c[i, j-1] 
13.                           then c[i, j] c[i-1, j] 
14.                           b[i, j] “↑”
15.                      else 
16.                           c[i, j] c[i, j-1] 
17.                           b[i, j] “←”
18. return 
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LCS Example
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Dynamic Programming vs. Divide-&-conquer

• Divide-&-conquer works best when all subproblems are
independent. So, pick the partition that makes the algorithm 
most efficient. Then simply combine their solutions to solve 
the entire problem. 

• Dynamic programming is needed when subproblems are 
dependent and we don’t know where to partition the problem. 
For example, let S1= {ALPHABET}, and S2 = {HABITAT}. 
Consider the subproblem with S1′ = {ALPH}, S2′ = {HABI}.

Then, LCS (S1′, S2′) + LCS (S1-S1′, S2-S2′) ≠ LCS(S1, S2)
• Divide-&-conquer is best suited for the case when no 

“overlapping subproblems” are encountered. 
• In dynamic programming algorithms, we typically solve each 

subproblem only once and store their solutions. But this is at 
the cost of space.
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Dynamic programming vs Greedy

1. Dynamic Programming algorithms are less efficient than 
greedy algorithms because they typically try every possible 
way of partitioning the problem. However, there are many 
problems that greedy methods cannot solve while dynamic 
programming can. Therefore, we first try greedy algorithm. 
If it fails then try dynamic programming. 

2. Dynamic Programming solutions using memoization are 
solved bottom-up. Dynamic Programming solutions using 
recursion are solved top-down (less efficient). Solution of 
the problem requires solutions of all subproblems. 

3. Greedy algorithms are neither top-down nor bottom-up. 
They are “incremental” solutions and rely on the assumption 
that the greedy choice is a good choice. Making the greedy 
choice reduces the problem to a smaller subproblem. 



02/18/03 Lecture 12 7

Fractional Knapsack Problem

• Burglar’s choices:
Items: x1, x2, …, xn
Value:  v1, v2, …, vn
Max Quantity: q1, q2, …, qn
Weight per unit quantity: w1, w2, …, wn
Getaway Truck has a weight limit of B.
Burglar can take “fractional” amount of any item. 
How can burglar maximize value of the loot?

• Greedy Algorithm works!
Pick the maximum possible quantity of highest 
value per weight item. Continue until weight limit 
of truck is reached.
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0-1 Knapsack Problem

• Burglar’s choices:
Items: x1, x2, …, xn

Value:  v1, v2, …, vn

Weight: w1, w2, …, wn

Getaway Truck has a weight limit of B.
Burglar cannot take “fractional” amount of item. 
How can burglar maximize value of the loot?

• Greedy Algorithm does not work! Why?
• Need dynamic programming!
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0-1 Knapsack Problem

• Subproblems?
– V[j, L] = Optimal solution for knapsack problem assuming 

a truck of weight limit L and choice of items from set 
{1,2,…, j}.

– V[n, B] = Optimal solution for original problem
– V[1, L] = easy to compute for all values of L.

• Table of solutions?
– V[1..n, 1..B]

• Ordering of subproblems?
– Row-wise

• Recurrence Relation? [Either xj included or not]
– V[j, L] = max { V[j-1, L],

vj + V[j-1, L-wj] }
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