
02/20/03 Lecture 13 1

Amortized Analysis

• In amortized analysis, we are looking for the time
complexity of a sequence of n operations, instead of
the cost of a single operation.

• Cost of a sequence of n operations = n S(n), where
S(n) = worst case cost of each of the n operations

• Amortized Cost = T(n)/n, where T(n) = worst case
total cost of the n operations in the sequence.

• Amortized cost can be small even when some
operations in that sequence are expensive. Often,
the worst case may not occur in every operation.
The cost of expensive operations may be ‘paid for’ by
charging to other less expensive operations.

02/20/03 Lecture 13 2

Problem 1: Stack Operations

• Data Structure: Stack
• Operations:

– Push(s,x) : Push object x into stack s.
• Cost: T(push)= O(1).

– Pop(s) : Pop the top object in stack s.
• Cost: T(pop)=O(1).

– MultiPop(s,k) ; Pop the top k objects in stack s.
• Cost: T(mp) = O(size(s)) worst case

• Assumption: Start with an empty stack
• Simple analysis: For N operations, the maximum size of stack is

N. Since the cost of MultiPop under the worst case is O(N),
which is the largest in all three operations, the total cost of N
operations must be less than N x T(mp) = O(N2).

02/20/03 Lecture 13 3

Amortized analysis: Stack Operations

• Intuition: Worst case cannot happen all the time!
• Idea: pay a dollar for every operation, and then count carefully.
• Suppose we pay 2 dollars for each Push operation, one to pay

for the operation itself, and another for “future use” (we pin it to
the object on the stack).

• When we do Pop or MultiPop operations to pop objects, instead
of paying from our pocket, we pay the operations with the extra
dollar pinned to the objects that are being popped.

• So the total cost of N operations must be less than 2 x N
• Amortized cost = T(N)/N = 2.

02/20/03 Lecture 13 4

Problem 2: Binary Counter

• Data Structure: binary counter b.
• Operations: Inc(b).

– Cost of Inc(b) = number of bits flipped in the operation.
• What’s the total cost of N operations when this counter

counts up to integer N?
• Approach 1: simple analysis

– The size of the counter is log(N). The worst case will be that
every bit is flipped in an operation, so for N operations, the
total cost under the worst case is O(Nlog(N))

02/20/03 Lecture 13 5

Approach 2: Binary Counter

• Intuition: Worst case cannot happen all the time!
000000
000001
000010
000011
000100
000101
000110
000111

Bit 0 flips every time, bit 1 flips every other
time, bit 2 flips every fourth time, etc. We
can conclude that for bit k, it flips every 2k

time.
So the total bits flipped in N operations, when
the counter counts from 1 to N, will be = ?

NNNNT
k

k

N

k
k 2

2
1

2
)(

0

log

0
=<= ∑∑

∞

==

So the amortized cost will be T(N)/N = 2.

02/20/03 Lecture 13 6

Approach 3: Binary Counter

• For k bit counters, the total cost is
t(k) = 2 x t(k-1) + 1

• So for N operations, T(N) = t(log(N)).
• t(k) = ?
• T(N) can be proved to be bounded by 2N.

02/20/03 Lecture 13 7

Amortized Analysis: Potential Method
• For the n operations, the data structure goes through states: D0,

D1, D2, …, Dn with costs c1, c2, …, cn

• Define potential function Φ(Di): represents the potential energy
of data structure after ith operation.

• The amortized cost of the ith operation is defined by:

• The total amortized cost is

() ()1ˆ −Φ−Φ+= iiii DDcc

() ()() () ()

() ()() ∑∑

∑∑∑

==

==
−

=

+Φ−Φ−=

+Φ−Φ=Φ−Φ+=

n

i
in

n

i
i

n

i
in

N

i
iii

n

i
i

cDDc

cDDDDcc

1
0

1

1
0

1
1

1

ˆ

ˆ

02/20/03 Lecture 13 8

Potential Method - Cont’d

• If
then

which then acts as an upper bound for the total cost.
So we need to define a suitable potential function
such that this function is always non-negative.

() ()0DDn Φ≥Φ

∑∑
==

≤
n

i
i

n

i
i cc

11

ˆ

02/20/03 Lecture 13 9

Potential Method: Stack

Ncccccc

kkkcc

cc

cc

pushpopmultipoppush

NN

kmultipopkmultipop

poppop

pushpush

2ˆˆˆˆˆ

0ˆ
01ˆ
21ˆ

)()(

<=++=<

=−=−=

=−=

=+=

∑∑∑∑∑∑

• Define F(D) = # of items on stack
• F(D0) = 0
• F(Dn) ¥ 0

02/20/03 Lecture 13 10

Potential Method: Binary Counter

() ()

Ncc

kkcc
NN

2ˆ

211ˆ

=<

=−++=∆Φ+=

∑∑

• Define F(D) = # of 1’s in counter
• F(D0) = 0
• F(Dn) ¥ 0

	Amortized Analysis
	Problem 1: Stack Operations
	Amortized analysis: Stack Operations
	Problem 2: Binary Counter
	Approach 2: Binary Counter
	Approach 3: Binary Counter
	Amortized Analysis: Potential Method
	Potential Method - Cont’d
	Potential Method: Stack
	Potential Method: Binary Counter

