
03/04/03 Lecture 15 1

Priority Queue
• Operations

– MAXIMUM(S) , 
– INSERT(S, x)
– EXTRACT-MAX(S)
– INCREASE-KEY(S, x, k)

• Implementation
– Use a HEAP.
– MAXIMUM: 

• Return value stored at root.
– INSERT: 

• Insert at last leaf and percolate up tree.
– EXTRACT-MAX: 

• Delete root of heap and call HEAPIFY.
– INCREASE-KEY: 

• Change value and percolate up tree.



03/04/03 Lecture 15 2

Graphs

• Graph G(V,E)
• V Vertices or Nodes
• E Edges or Links: pairs of vertices
• D Directed vs. Undirected edges
• Weighted vs Unweighted
• Graphs can be augmented to store extra info (e.g., 

city population, oil flow capacity, etc.)
• Paths and Cycles
• Subgraphs G’(V’,E’), where V’ is a subset of V and 

E’ is a subset of E
• Trees and Spanning trees



03/04/03 Lecture 15 3



03/04/03 Lecture 15 4

Graph Traversal

• Visit every vertex and every edge.
• Traversal has to be systematic so that no vertex 

or edge is missed. 
• Just as tree traversals can be modified to solve 

several tree-related problems, graph traversals 
can be modified to solve several problems.



03/04/03 Lecture 15 5



03/04/03 Lecture 15 6

DFS(G)
1. For each vertex u ∈ V[G] do
2. color[u] ← WHITE
3. π[u] ← NIL
4. Time ← 0
5. For each vertex u ∈ V[G] do
6. if color[u] = WHITE then 
7. DFS-VISIT(u)

DFS-VISIT(u)
1. VisitVertex(u)
2. Color[u] ← GRAY
3. Time ← Time + 1
4. d[u] ← Time
5. for each v ∈ Adj[u] do
6. VisitEdge(u,v)
7. if (color[v] = WHITE) then 
8. π[v] ← u
9. DFS-VISIT(v)
10. color[u] ← BLACK
11. F[u] ← Time ← Time + 1

Depth
First
Search



03/04/03 Lecture 15 7



03/04/03 Lecture 15 8

Mid Term Exam 1


	Priority Queue
	Graphs
	Graph Traversal
	Mid Term Exam 1

