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DFS(G)
1. For each vertex u ∈ V[G] do
2. color[u] ← WHITE
3. π[u] ← NIL
4. Time ← 0
5. For each vertex u ∈ V[G] do
6. if color[u] = WHITE then 
7. DFS-VISIT(u)

DFS-VISIT(u)
1. VisitVertex(u)
2. Color[u] ← GRAY
3. Time ← Time + 1
4. d[u] ← Time
5. for each v ∈ Adj[u] do
6. VisitEdge(u,v)
7. if (v ≠ π[u]) then
8. if (color[v] = WHITE) then 
9. π[v] ← u
10. DFS-VISIT(v)
11. color[u] ← BLACK
12. F[u] ← Time ← Time + 1

Depth
First
Search
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BFS(G,s)
1. For each vertex u ∈V[G] – {s} do
2. color[u] ← WHITE
3. d[u] ← ∞
4. π[u] ← NIL
5. Color[u] ← GRAY
6. D[s] ← 0
7. π[s] ← NIL
8. Q ← Φ
9. ENQUEUE(Q,s)
10. While Q ≠ Φ do
11. u ← DEQUEUE(Q)
12. VisitVertex(u)
13. for each v ∈ Adj[u] do
14. VisitEdge(u,v)
15. if (color[v] = WHITE) then 
16. color[v] ← GRAY
17. d[v] ← d[u] + 1
18. π[v] ← u
19. ENQUEUE(Q,v)
20. color[u] ← BLACK

Breadth
First
Search
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Figure 14.30A
A topological sort. The conventions are the same as those in Figure 14.21 
(continued).
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Figure 14.30B
A topological sort. The conventions are the same as those in 
Figure 14.21.
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Figure 14.31A
The stages of acyclic graph algorithm. The conventions are the same as 
those in Figure 14.21 (continued).
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Figure 14.31B
The stages of acyclic graph algorithm. The conventions are the same as 
those in Figure 14.21.
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Connectivity

• A (simple) undirected graph is connected if there 
exists a path between every pair of vertices.

• If a graph is not connected, then G’(V’,E’) is a 
connected component of the graph G(V,E) if V’ is a 
maximal subset of vertices from V that induces a 
connected subgraph. (What is the meaning of 
maximal?)

• The connected components of a graph correspond 
to a partition of the set of the vertices. (What is 
the meaning of partition?)

• How to compute all the connected components?
– Use DFS or BFS.
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Biconnectivity: Generalizing Connectivity

• A tree is a minimally connected graph. 
• Removing a vertex from a connected graph may 

make it disconnected.
• A graph is biconnected if removing a single vertex 

does not disconnect the graph.
• Alternatively, a graph is biconnected if for every 

pair of vertices there exists at least 2 disjoint 
paths between them. 

• A graph is k-connected if for every pair of 
vertices there exists at least k disjoint paths 
between them. Alternatively, removal of any k-1
vertices does not disconnect the graph.
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Biconnected Components

• If a graph is not biconnected, it can be 
decomposed into biconnected components.

• An articulation point is a vertex whose removal 
disconnects the graph. 

• Claim: If a graph is not biconnected, it must have 
an articulation point. Proof?

• A biconnected component of a simple undirected 
graph G(V,E) is a maximal set of edges from E that 
induces a biconnected subgraph. 
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Biconnected Components
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