
03/11/03 Lecture 17 1

DFS(G)
1. For each vertex u ∈ V[G] do
2. color[u] ← WHITE
3. π[u] ← NIL
4. Time ← 0
5. For each vertex u ∈ V[G] do
6. if color[u] = WHITE then
7. DFS-VISIT(u)

DFS-VISIT(u)
1. VisitVertex(u)
2. Color[u] ← GRAY
3. Time ← Time + 1
4. d[u] ← Time
5. for each v ∈ Adj[u] do
6. VisitEdge(u,v)
7. if (v ≠ π[u]) then
8. if (color[v] = WHITE) then
9. π[v] ← u
10. DFS-VISIT(v)
11. color[u] ← BLACK
12. F[u] ← Time ← Time + 1

Depth
First
Search

03/11/03 Lecture 17 2

03/11/03 Lecture 17 3

BFS(G,s)
1. For each vertex u ∈V[G] – {s} do
2. color[u] ← WHITE
3. d[u] ← ∞
4. π[u] ← NIL
5. Color[u] ← GRAY
6. D[s] ← 0
7. π[s] ← NIL
8. Q ← Φ
9. ENQUEUE(Q,s)
10. While Q ≠ Φ do
11. u ← DEQUEUE(Q)
12. VisitVertex(u)
13. for each v ∈ Adj[u] do
14. VisitEdge(u,v)
15. if (color[v] = WHITE) then
16. color[v] ← GRAY
17. d[v] ← d[u] + 1
18. π[v] ← u
19. ENQUEUE(Q,v)
20. color[u] ← BLACK

Breadth
First
Search

03/11/03 Lecture 17 4

Figure 14.30A
A topological sort. The conventions are the same as those in Figure 14.21
(continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/03 Lecture 17 5

Figure 14.30B
A topological sort. The conventions are the same as those in
Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/03 Lecture 17 6

Figure 14.31A
The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21 (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/03 Lecture 17 7

Figure 14.31B
The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21.

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/11/03 Lecture 17 8

Connectivity

• A (simple) undirected graph is connected if there
exists a path between every pair of vertices.

• If a graph is not connected, then G’(V’,E’) is a
connected component of the graph G(V,E) if V’ is a
maximal subset of vertices from V that induces a
connected subgraph. (What is the meaning of
maximal?)

• The connected components of a graph correspond
to a partition of the set of the vertices. (What is
the meaning of partition?)

• How to compute all the connected components?
– Use DFS or BFS.

03/11/03 Lecture 17 9

Biconnectivity: Generalizing Connectivity

• A tree is a minimally connected graph.
• Removing a vertex from a connected graph may

make it disconnected.
• A graph is biconnected if removing a single vertex

does not disconnect the graph.
• Alternatively, a graph is biconnected if for every

pair of vertices there exists at least 2 disjoint
paths between them.

• A graph is k-connected if for every pair of
vertices there exists at least k disjoint paths
between them. Alternatively, removal of any k-1
vertices does not disconnect the graph.

03/11/03 Lecture 17 10

Biconnected Components

• If a graph is not biconnected, it can be
decomposed into biconnected components.

• An articulation point is a vertex whose removal
disconnects the graph.

• Claim: If a graph is not biconnected, it must have
an articulation point. Proof?

• A biconnected component of a simple undirected
graph G(V,E) is a maximal set of edges from E that
induces a biconnected subgraph.

03/11/03 Lecture 17 11

Biconnected Components

	Connectivity
	Biconnectivity: Generalizing Connectivity
	Biconnected Components
	Biconnected Components

