DFS(6)

1. For each vertex u € V[G] do
2. color[u] « WHITE
3. n[u] < NIL
4. Time < 0 DFS-VISIT(u)
5. For each vertex u € V[G] do 1. VisitVertex(u)
6. if color[u] = WHITE then |2 cColor[u] «- GRAY
7. DFS-VISIT(u) 3. Time « Time+1
4. d[u] < Time
5. for each v € Adj[u] do
6. VisitEdge(u,v)
Dep th 7. if (v=n[u]) then
First 8. if (color[v] = WHITE) then
9. n[v] < u
Search 10, DFS-VISIT(V)
11. color[u] <~ BLACK
12. F[u] « Time « Time + 1

03/11/03 Lecture 17 1

03/11/03

(a)

(c)

(e)

(h)

(i) 20"

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they
are produced by BFS. Within each vertex u is shown d[u]. The queue @ is shown at the beginning
of each iteration of the while loop of lines 10-18. Vertex distances are shown next to vertices in the
queue.

Lecture 17

Breadth
First
Search

03/11/03

BFS(6G,s)

o NGC Ok W =

For each vertex u eV[G] - {s} do
color[u] < WHITE
d[u] « «
n[u] « NIL
Color[u] « GRAY
D[s]« O
n[s] <« NIL
Q« D
ENQUEVE(Q,s)

10 While Q # ® do

11.

12.
13.
14,
15.
16.
17.
18.
19.
20.

u < DEQUEVE(Q)
VisitVertex(u)
for each v € Adj[u] do
VisitEdge(u,v)
if (color[v] = WHITE) then
color[v] < GRAY
d[v] < d[u]+1
n[v] < u
ENQUEUE(Q,v)
color[u] « BLACK

Figure 14.30A

A topological sort. The conventions are the same as those in Figure 14.21
(continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.30B

A topological sort. The conventions are the same as those in
Figure 14.21.

) O
W & W ® @
(@S 5 6
0 @
W oW W W w W
& @ 7 W @ s

)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.31A

The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21 (continued).

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 14.31B

The stages of acyclic graph algorithm. The conventions are the same as
those in Figure 14.21.

\VEC RS O WAV r/vevlulv 1/

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Connectivity

* A (simple) undirected graph is connected if there
exists a path between every pair of vertices.

* If agraph is not connected, then G'(V',E’) is a
connected component of the graph G(V,E) if V'isa
maximal subset of vertices from V that induces a
connected subgraph. (What is the meaning of
maximal?)

* The connected components of a graph correspond
to a partition of the set of the vertices. (What is
the meaning of partition?)

How to compute all the connected components?
- Use DFS or BFS.

03/11/03 Lecture 17

Biconnectivity: Generalizing Connectivity

A tree is a minimally connected graph.

+ Removing a vertex from a connected graph may
make it disconnected.

A graph is biconnected if removing a single vertex
does not disconnect the graph.

Alternatively, a graph is biconnected if for every
pair of vertices there exists at least 2 disjoint
paths between them.

A graph is k-connected if for every pair of
vertices there exists at least k disjoint paths
between them. Alternatively, removal of any k-1
vertices does not disconnect the graph.

03/11/03 Lecture 17

Biconnected Components

+ If agraph is not biconnected, it can be
decomposed into biconnected components.

» An articulation point is a vertex whose removal
disconnects the graph.

* Claim: If agraph is not biconnected, it must have
an articulation point. Proof?

» A biconnected component of a simple undirected
graph G(V,E) is a maximal set of edges from E that
induces a biconnected subgraph.

03/11/03 Lecture 17 10

03/11/03

Biconnected Components

Figure 22,10 The articulation points, bridges, and biconnected components of a connected, undi-
rected graph for use in Problem 22-2. The articulation points are the heavily shaded vertices, the
bridges are the heavily shaded edges, and the biconnected components are the edges in the shaded
regions, with a bee numbering shown.

Lecture 17

11

	Connectivity
	Biconnectivity: Generalizing Connectivity
	Biconnected Components
	Biconnected Components

