DFS(G)

- 1. For each vertex $u \in V[G]$ do
- 2. $color[u] \leftarrow WHITE$
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. Time $\leftarrow 0$
- 5. For each vertex $u \in V[G]$ do
- 6. **if** color[u] = WHITE **then**
- 7. DFS-VISIT(u)

```
Depth
First
Search
```

```
DFS-VISIT(u)
1. VisitVertex(u)
2. Color[u] \leftarrow GRAY
3. Time \leftarrow Time + 1
4. d[u] \leftarrow Time
5. for each v \in Adj[u] do
6. VisitEdge(u,v)
7. if (v \neq \pi[u]) then
8.
         if (color[v] = WHITE) then
9.
              \pi[v] \leftarrow u
10.
             DFS-VISIT(v)
11. color[u] \leftarrow BLACK
12. F[u] \leftarrow Time \leftarrow Time + 1
```


Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they are produced by BFS. Within each vertex u is shown d[u]. The queue Q is shown at the beginning of each iteration of the while loop of lines 10–18. Vertex distances are shown next to vertices in the queue.

Breadth First Search

BFS(G,s)	
L.	For each vertex $u \in V[G] - \{s\}$ do
2.	color[u] ← WHITE
3.	$d[u] \leftarrow \infty$
4.	$\pi[u] \leftarrow NIL$
5.	Color[u] ← GRAY
ó.	$D[s] \leftarrow 0$
7.	$\pi[s] \leftarrow NIL$
3.	$Q \leftarrow \Phi$
Э.	ENQUEUE(Q,s)
10.	While $\mathbf{Q} \neq \Phi$ do
1.	$u \leftarrow DEQUEUE(Q)$
12.	VisitVertex(u)
13.	for each v ∈ Adj[u] do
.4.	VisitEdge(u,v)
15.	if (color[v] = WHITE) then
16.	color[v] ← GRAY
17.	$d[v] \leftarrow d[u] + 1$
18.	$\pi[v] \leftarrow u$
19.	ENQUEUE(Q,v)
20.	color[u] ← BLACK

Figure 14.30A

A topological sort. The conventions are the same as those in Figure 14.21 (continued).

Figure 14.30B

A topological sort. The conventions are the same as those in Figure 14.21.

Figure 14.31A

The stages of acyclic graph algorithm. The conventions are the same as those in Figure 14.21 (*continued*).

Figure 14.31B

The stages of acyclic graph algorithm. The conventions are the same as those in Figure 14.21.

Connectivity

- A (simple) undirected graph is <u>connected</u> if there exists a path between every pair of vertices.
- If a graph is not connected, then G'(V',E') is a <u>connected component</u> of the graph G(V,E) if V' is a <u>maximal</u> subset of vertices from V that induces a connected subgraph. (What is the meaning of <u>maximal</u>?)
- The connected components of a graph correspond to a <u>partition</u> of the set of the vertices. (What is the meaning of <u>partition</u>?)
- How to compute all the connected components?
 - Use DFS or BFS.

Biconnectivity: Generalizing Connectivity

- A tree is a minimally connected graph.
- Removing a vertex from a connected graph may make it disconnected.
- A graph is <u>biconnected</u> if removing a single vertex does not disconnect the graph.
- Alternatively, a graph is <u>biconnected</u> if for every pair of vertices there exists at least 2 disjoint paths between them.
- A graph is <u>k-connected</u> if for every pair of vertices there exists at least k disjoint paths between them. Alternatively, removal of any k-1 vertices does not disconnect the graph.

Biconnected Components

- If a graph is not biconnected, it can be decomposed into biconnected components.
- An <u>articulation point</u> is a vertex whose removal disconnects the graph.
- Claim: If a graph is not biconnected, it must have an articulation point. Proof?
- A biconnected component of a simple undirected graph G(V,E) is a <u>maximal</u> set of edges from E that induces a biconnected subgraph.

Biconnected Components

Figure 22.10 The articulation points, bridges, and biconnected components of a connected, undirected graph for use in Problem 22-2. The articulation points are the heavily shaded vertices, the bridges are the heavily shaded edges, and the biconnected components are the edges in the shaded regions, with a *bcc* numbering shown.