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Connectivity

• A (simple) undirected graph is connected if there 
exists a path between every pair of vertices.

• If a graph is not connected, then G’(V’,E’) is a 
connected component of the graph G(V,E) if V’ is a 
maximal subset of vertices from V that induces a 
connected subgraph. (What is the meaning of 
maximal?)

• The connected components of a graph correspond 
to a partition of the set of the vertices. (What is 
the meaning of partition?)

• How to compute all the connected components?
– Use DFS or BFS.
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Biconnectivity: Generalizing Connectivity

• A tree is a minimally connected graph. 
• Removing a vertex from a connected graph may 

make it disconnected.
• A graph is biconnected if removing a single vertex 

does not disconnect the graph.
• Alternatively, a graph is biconnected if for every 

pair of vertices there exists at least 2 disjoint 
paths between them. 

• A graph is k-connected if for every pair of 
vertices there exists at least k disjoint paths 
between them. Alternatively, removal of any k-1
vertices does not disconnect the graph.
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Biconnected Components

• If a graph is not biconnected, it can be 
decomposed into biconnected components.

• An articulation point is a vertex whose removal 
disconnects the graph. 

• Claim: If a graph is not biconnected, it must have 
an articulation point. Proof?

• A biconnected component of a simple undirected 
graph G(V,E) is a maximal set of edges from E that 
induces a biconnected subgraph. 
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Biconnected Components
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BCC(G, u) // Compute the biconnected components of G 
// starting from vertex u

1. Color[u] ← GRAY
2. Low[u] ← d[u] ← Time ← Time + 1
3. Put u on stack S
4. for each v ∈ Adj[u] do
5. if (v ≠ π[u]) and (color[v] ≠ BLACK) then 
6. if (TopOfStack(S) ≠ u) then put u on stack S
7. Put edge (u,v) on stack S
8. if (color[v] = WHITE) then 
9. π[v] ← u
10. BCC(G, v)
11. if (Low[v] >= d[u]) then // u is an articul. pt.
12. // Output next biconnected component
13. Pop S until u is reached
14. Push u back on S
15. Low[u] = min { Low[u], Low[v] }
16. else Low[u] = min { Low[u], d[v] } // back edge
17. color[u] ← BLACK
18. F[u] ← Time ← Time + 1
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BCC Example
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Minimum Spanning Tree
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Minimum Spanning Tree
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Proof of Correctness: MST Algorithms
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Dijkstra’s Single Source Shortest Path Algorithm 
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All Pairs Shortest Path Algorithm

• Invoke Dijkstra’s SSSP algorithm n times.
• Or use dynamic programming. How?
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Figure 14.33
An activity-node graph
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Figure 14.34
An event-node graph
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Figure 14.35
Earliest completion times

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley



03/25/03 Lecture 18 22

Figure 14.36
Latest completion times
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Figure 14.37
Earliest completion time, latest completion time, and slack (additional edge 
item)
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Figure 14.38
Worst-case running times of various graph algorithms
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