
03/25/03 Lecture 18 1

Connectivity

• A (simple) undirected graph is connected if there
exists a path between every pair of vertices.

• If a graph is not connected, then G’(V’,E’) is a
connected component of the graph G(V,E) if V’ is a
maximal subset of vertices from V that induces a
connected subgraph. (What is the meaning of
maximal?)

• The connected components of a graph correspond
to a partition of the set of the vertices. (What is
the meaning of partition?)

• How to compute all the connected components?
– Use DFS or BFS.

03/25/03 Lecture 18 2

Biconnectivity: Generalizing Connectivity

• A tree is a minimally connected graph.
• Removing a vertex from a connected graph may

make it disconnected.
• A graph is biconnected if removing a single vertex

does not disconnect the graph.
• Alternatively, a graph is biconnected if for every

pair of vertices there exists at least 2 disjoint
paths between them.

• A graph is k-connected if for every pair of
vertices there exists at least k disjoint paths
between them. Alternatively, removal of any k-1
vertices does not disconnect the graph.

03/25/03 Lecture 18 3

Biconnected Components

• If a graph is not biconnected, it can be
decomposed into biconnected components.

• An articulation point is a vertex whose removal
disconnects the graph.

• Claim: If a graph is not biconnected, it must have
an articulation point. Proof?

• A biconnected component of a simple undirected
graph G(V,E) is a maximal set of edges from E that
induces a biconnected subgraph.

03/25/03 Lecture 18 4

Biconnected Components

03/25/03 Lecture 18 5

BCC(G, u) // Compute the biconnected components of G
// starting from vertex u

1. Color[u] ← GRAY
2. Low[u] ← d[u] ← Time ← Time + 1
3. Put u on stack S
4. for each v ∈ Adj[u] do
5. if (v ≠ π[u]) and (color[v] ≠ BLACK) then
6. if (TopOfStack(S) ≠ u) then put u on stack S
7. Put edge (u,v) on stack S
8. if (color[v] = WHITE) then
9. π[v] ← u
10. BCC(G, v)
11. if (Low[v] >= d[u]) then // u is an articul. pt.
12. // Output next biconnected component
13. Pop S until u is reached
14. Push u back on S
15. Low[u] = min { Low[u], Low[v] }
16. else Low[u] = min { Low[u], d[v] } // back edge
17. color[u] ← BLACK
18. F[u] ← Time ← Time + 1

03/25/03 Lecture 18 6

BCC Example

7

5

6

81

324

03/25/03 Lecture 18 7

Minimum Spanning Tree

03/25/03 Lecture 18 8

03/25/03 Lecture 18 9

03/25/03 Lecture 18 10

Minimum Spanning Tree

03/25/03 Lecture 18 11

03/25/03 Lecture 18 12

03/25/03 Lecture 18 13

Proof of Correctness: MST Algorithms

03/25/03 Lecture 18 14

03/25/03 Lecture 18 15

Dijkstra’s Single Source Shortest Path Algorithm

03/25/03 Lecture 18 16

03/25/03 Lecture 18 17

All Pairs Shortest Path Algorithm

• Invoke Dijkstra’s SSSP algorithm n times.
• Or use dynamic programming. How?

03/25/03 Lecture 18 18

03/25/03 Lecture 18 19

Figure 14.33
An activity-node graph

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/25/03 Lecture 18 20

Figure 14.34
An event-node graph

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/25/03 Lecture 18 21

Figure 14.35
Earliest completion times

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/25/03 Lecture 18 22

Figure 14.36
Latest completion times

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/25/03 Lecture 18 23

Figure 14.37
Earliest completion time, latest completion time, and slack (additional edge
item)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

03/25/03 Lecture 18 24

Figure 14.38
Worst-case running times of various graph algorithms

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

	Connectivity
	Biconnectivity: Generalizing Connectivity
	Biconnected Components
	Biconnected Components
	BCC Example
	Minimum Spanning Tree
	Minimum Spanning Tree
	Proof of Correctness: MST Algorithms
	Dijkstra’s Single Source Shortest Path Algorithm
	All Pairs Shortest Path Algorithm

