Polynomial-time computations

- An algorithm has time complexity $O(T(n))$ if it runs in time at most $c T(n)$ for every input of length n.
- An algorithm is a polynomial-time algorithm if its time complexity is $O(p(n))$, where $p(n)$ is polynomial in n .

Polynomials

- If $f(n)=$ polynomial function in n, then $f(n)=O\left(n^{c}\right)$, for some fixed constant c
- If $f(n)=$ exponential (super-polynomial) function in n,
then $f(n)=\omega\left(n^{c}\right)$, for any constant c
- Composition of polynomial functions are also polynomial, i.e.,
$f(g(n))=$ polynomial if $f()$ and $g()$ are polynomial
- If an algorithm calls another polynomial-time subroutine a polynomial number of times, then the time complexity is polynomial.

The class P

- A problem is in P if there exists a polynomial-time algorithm that solves the problem.
- Examples of P
- DFS: Linear-time algorithm exists
- Sorting: O(n log n)-time algorithm exists
- Bubble Sort: Quadratic-time algorithm $O\left(n^{2}\right)$
- APSP: Cubic-time algorithm $O\left(n^{3}\right)$
- P is therefore a class of problems (not algorithms)!

The class NP

- A problem is in NP if there exists a nondeterministic polynomial-time algorithm that solves the problem.
- A problem is in VP if there exists a (deterministic) polynomial-time algorithm that verifies a solution to the problem.
- All problems in P are in VP

TSP: Traveling Salesperson Problem

- Input:
- Weighted graph, G
- Length bound, B
- Output:
- Is there a traveling salesperson tour in G of length at most B ?
- Is TSP in NP?
- YES. Easy to verify a given solution.
- Is TSP in P?
- OPEN!
- One of the greatest unsolved problems of this century!
- Same as asking: Is $P=$ VP?

So, what is NP-Complete?

- VP-Complete problems are the "hardest" problems in 2 p .
- We need to formalize the notion of "hardest".

Terminology

- Problem:
- An abstract problem is a function (relation) from a set I of instances of the problem to a set S of solutions.

$$
p: I \rightarrow S
$$

- An instance of a problem p is obtained by assigning values to the parameters of the abstract problem.
- Thus, describing the set of all instances (I.e., possible inputs) and the set of corresponding outputs defines a problem.
- Algorithm:
- An algorithm that solves problem p must give correct solutions to all instances of the problem.
- Polynomial-time algorithm:

Terminology (Cont'd)

- Input Length:
- length of an encoding of an instance of the problem.
- Time and space complexities are written in terms of it.
- Worst-case time/space complexity of an algorithm
- Is the maximum time/space required by the algorithm on any input of length n.
- Worst-case time/space complexity of a problem
- UPPER BOUND: worst-case time complexity of best existing algorithm that solves the problem.
- LOWER BOUND: (provable) worst-case time complexity of best algorithm (need not exist) that could solve the problem.
- LOWER BOUND \leq UPPER BOUND
- Complexity Class P :
- Set of all problems p for which polynomial-time algorithms exist

Terminology (Cont'd)

- Decision Problems:
- Are problems for which the solution set is \{yes, no\}
- Example: Does a given graph have an odd cycle?
- Example: Does a given weighted graph have a TSP tour of length at most B ?
- Complement of a decision problem:
- Are problems for which the solution is "complemented".
- Example: Does a given graph NOT have an odd cycle?
- Example: Is every TSP tour of a given weighted graph of length greater than B?
- Optimization Problems:
- Are problems where one is maximizing (or minimizing) some objective function.
- Example: Given a weighted graph, find a MST.
- Example: Given a weighted graph, find an optimal TSP tour.
- Verification Algorithms:
- Given a problem instance i and a certificate s, is s a solution for instance i?

Terminology (Cont'd)

- Complexity Class P :
- Set of all problems p for which polynomial-time algorithms exist.
- Complexity Class VP :
- Set of all problems p for which polynomial-time verification algorithms exist.
- Complexity Class ca-VP:
- Set of all problems p for which polynomial-time verification algorithms exist for their complements, I.e., their complements are in vp.

Terminology (Cont'd)

- Reductions:

$$
p_{1} \rightarrow p_{2}
$$

- A problem p_{1} is reducible to p_{2}, if there exists an algorithm R that takes an instance i_{1} of p_{1} and outputs an instance i_{2} of p_{2}, with the constraint that the solution for i_{1} is YES if and only if the solution for i_{2} is YES.
- Thus, R converts YES (NO) instances of p_{1} to YES (NO) instances of p_{2}.
- Polynomial-time reductions: $\mathrm{p}_{1} \xrightarrow{p} \mathrm{p}_{2}$
- Reductions that run in polynomial time.
- If $p_{1} \xrightarrow{p} p_{2}$, then
-If p_{2} is easy, then so is p_{1}.

$$
\begin{aligned}
& \mathrm{p}_{2} \in \mathcal{P} \Rightarrow \mathrm{p}_{1} \in \mathcal{P} \\
& \mathrm{p}_{1} \notin \mathcal{P} \Rightarrow \mathrm{p}_{2} \notin \mathcal{P}
\end{aligned}
$$

-If p_{1} is hard, then so is p_{2}.

What are NP-Complete problems?

- These are the hardest problems in VP.
- A problem p is VP-Complete if
- there is a polynomial-time reduction from every problem in VP to p.
$-p \in \operatorname{Rp}$
- How to prove that a problem is VP-Complete?
- Cook's Theorem: [1972]
-The SAT problem is VP-Complete.
Steve Cook, Richard Karp, Leonid Levin

NP-Camplete vs NP-Hard

- A problem p is VP-Complete if
- there is a polynomial-time reduction from every problem in NP to p.
- $p \in \operatorname{NT}$
- A problem p is NP-Hard if
- there is a polynomial-time reduction from every problem in NP to p.

The SAT Problem: an example

- Consider the boolean expression:

$$
C=(a \vee \neg b \vee c) \wedge(\neg a \vee d \vee \neg e) \wedge(a \vee \neg d \vee \neg c)
$$

- Is C satisfiable?
- Does there exist a True/False assignments to the boolean variables a, b, c, d, e, such that C is True?
- Set $a=$ True and $d=$ True. The others can be set arbitrarily, and C will be true.
- If C has 40,000 variables and 4 million clauses, then it becomes hard to test this.
- If there are n boolean variables, then there are 2^{n} different truth value assignments.
- However, a solution can be quickly verified!

The SAT (Satisfiability) Problem

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses.
- Question: Is C satisfiable?
- Let $C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- Where each $C_{i}=\left(y_{1}^{i} \vee y_{2}^{i} \vee \cdots \vee y_{k_{i}}^{i}\right)$
- And each $y_{j}^{\prime} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.
- Steve Cook showed that the problem of deciding whether a non-deterministic Turing machine T accepts an input w or not can be written as a boolean expression C_{T} for a SAT problem. The boolean expression will have length bounded by a polynomial in the size of T and w.
- How to now prove Cook's theorem? Is SAT in VAP?
- Can every problem in VP be poly. reduced to it?

The problem classes and their relationships

More NP - Complete problems

3SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
- Let $C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- Where each $C_{i}=\left(y_{1}^{i} \vee y_{2}^{i} \vee y_{3}^{i}\right)$
- And each $y_{j}^{i} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

3SAT is VP-Complete.

More NP - Complete problems?

2SAT

- Input: Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- Question: Is C satisfiable?
- Let $C=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- Where each $C_{i}=\left(y_{1}^{i} \vee y_{2}^{i}\right)$
- And each $y_{j}^{i} \in\left\{x_{1}, \neg x_{1}, x_{2}, \neg x_{2}, \ldots, x_{n} \neg x_{n}\right\}$
- We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

```
2SAT is in \(P\).
```


3SAT is NP-Complete

- 3SAT is in VR.
- SAT can be reduced in polynomial time to 3SAT.
- This implies that every problem in 2 T can be reduced in polynomial time to 3SAT. Therefore, 3SAT is vip-Complete.
- So, we have to design an algorithm such that:
- Input: an instance C of SAT
- Output: an instance C^{\prime} of 3SAT such that satisfiability is retained. In other words, C is satisfiable if and only if C^{\prime} is satisfiable.

3SAT is VP-Complete

- Let C be an instance of SAT with clauses C_{1}, C_{2}, \ldots, C_{m}
- Let C_{i} be a disjunction of $k>3$ literals.

$$
C_{i}=\quad y_{1} \vee y_{2} \vee \ldots \vee y_{k}
$$

- Rewrite C_{i} as follows:

$$
\begin{aligned}
C_{i}^{\prime}=\quad & \left(y_{1} \vee y_{2} \vee z_{1}\right) \wedge \\
& \left(\neg z_{1} \vee y_{3} \vee z_{2}\right) \wedge \\
& \left(\neg z_{2} \vee y_{4} \vee z_{3}\right) \wedge \\
& \cdots \\
& \left(\neg z_{k-3} \vee y_{k-1} \vee y_{k}\right)
\end{aligned}
$$

- Claim: C_{i} is satisfiable if and only if C_{i}^{\prime} is satisfiable.

2SAT is in P

- If there is only one literal in a clause, it must be set to true.
- If there are two literals in some clause, and if one of them is set to false, then the other must be set to true.
- Using these constraints, it is possible to check if there is some inconsistency.
- How? Homework problem!

The CLIQUE Problem

- A clique is a completely connected subgraph.

CLIQUE

- Input: Graph G(V,E) and integer k
- Question: Does G have a clique of size k ?

CLIQUE is VP-Complete

- CLIQUE is in 2RP.
- Reduce 3SAT to CLIQUE in polynomial time.
- $F=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right)\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)\left(x_{2} \vee x_{3} \vee \neg x_{4}\right)\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)$

F is satisfiable if and only if G has a clique of size k where k is the number of clauses in F.

