Polynomial-time computations

- An algorithm has time complexity \(O(T(n)) \) if it runs in time at most \(cT(n) \) for every input of length \(n \).
- An algorithm is a polynomial-time algorithm if its time complexity is \(O(p(n)) \), where \(p(n) \) is polynomial in \(n \).
Polynomials

- If \(f(n) = \) polynomial function in \(n \),
 then \(f(n) = O(n^c) \), for some fixed constant \(c \)
- If \(f(n) = \) exponential (super-polynomial) function in \(n \),
 then \(f(n) = \omega(n^c) \), for any constant \(c \)
- Composition of polynomial functions are also polynomial, i.e.,
 \(f(g(n)) = \) polynomial if \(f() \) and \(g() \) are polynomial
- If an algorithm calls another polynomial-time subroutine a polynomial number of times, then the time complexity is polynomial.
The class \(\mathcal{P} \)

- A problem is in \(\mathcal{P} \) if there exists a polynomial-time algorithm that solves the problem.
- Examples of \(\mathcal{P} \)
 - **DFS**: Linear-time algorithm exists
 - **Sorting**: \(O(n \log n) \)-time algorithm exists
 - **Bubble Sort**: Quadratic-time algorithm \(O(n^2) \)
 - **APSP**: Cubic-time algorithm \(O(n^3) \)
- \(\mathcal{P} \) is therefore a class of problems (not algorithms)!
The class NP

- A problem is in NP if there exists a non-deterministic polynomial-time algorithm that solves the problem.
- A problem is in NP if there exists a (deterministic) polynomial-time algorithm that verifies a solution to the problem.
- All problems in P are in NP
TSP: Traveling Salesperson Problem

• **Input:**
 - Weighted graph, \(G \)
 - Length bound, \(B \)

• **Output:**
 - Is there a traveling salesperson tour in \(G \) of length at most \(B \)?

• Is TSP in **\(\text{NP} \)?**
 - **YES.** Easy to verify a given solution.

• Is TSP in **\(\text{P} \)?**
 - **OPEN!**
 - One of the greatest unsolved problems of this century!
 - Same as asking: Is \(\text{P} = \text{NP} \)?
So, what is **NP-Complete**?

- **NP-Complete** problems are the “hardest” problems in **NP**.
- We need to formalize the notion of “hardest”.
Terminology

• Problem:
 - An abstract problem is a function (relation) from a set I of instances of the problem to a set S of solutions.

 $p : I \rightarrow S$
 - An instance of a problem p is obtained by assigning values to the parameters of the abstract problem.
 - Thus, describing the set of all instances (I.e., possible inputs) and the set of corresponding outputs defines a problem.

• Algorithm:
 - An algorithm that solves problem p must give correct solutions to all instances of the problem.

• Polynomial-time algorithm:
Terminology (Cont’d)

• **Input Length:**
 - length of an encoding of an instance of the problem.
 - Time and space complexities are written in terms of it.

• **Worst-case time/space complexity of an algorithm**
 - Is the maximum time/space required by the algorithm on any input of length \(n \).

• **Worst-case time/space complexity of a problem**
 - **UPPER BOUND:** worst-case time complexity of best existing algorithm that solves the problem.
 - **LOWER BOUND:** (provable) worst-case time complexity of best algorithm (need not exist) that could solve the problem.
 - **LOWER BOUND \(\leq \) UPPER BOUND**

• **Complexity Class \(\mathcal{P} \):**
 - Set of all problems \(p \) for which polynomial-time algorithms exist
Terminology (Cont’d)

• Decision Problems:
 - Are problems for which the solution set is \{yes, no\}
 - Example: Does a given graph have an odd cycle?
 - Example: Does a given weighted graph have a TSP tour of length at most \(B\)?

• Complement of a decision problem:
 - Are problems for which the solution is “complemented”.
 - Example: Does a given graph NOT have an odd cycle?
 - Example: Is every TSP tour of a given weighted graph of length greater than \(B\)?

• Optimization Problems:
 - Are problems where one is maximizing (or minimizing) some objective function.
 - Example: Given a weighted graph, find a MST.
 - Example: Given a weighted graph, find an optimal TSP tour.

• Verification Algorithms:
 - Given a problem instance \(i\) and a certificate \(s\), is \(s\) a solution for instance \(i\)?
• **Complexity Class** \mathcal{P}:
 - Set of all problems p for which polynomial-time algorithms exist.

• **Complexity Class** \mathcal{NP}:
 - Set of all problems p for which polynomial-time verification algorithms exist.

• **Complexity Class** $\text{co-}\mathcal{NP}$:
 - Set of all problems p for which polynomial-time verification algorithms exist for their complements, i.e., their complements are in \mathcal{NP}.
Terminology (Cont’d)

• **Reductions**: \(p_1 \rightarrow p_2 \)
 - A problem \(p_1 \) is reducible to \(p_2 \), if there exists an algorithm \(R \) that takes an instance \(i_1 \) of \(p_1 \) and outputs an instance \(i_2 \) of \(p_2 \), with the constraint that the solution for \(i_1 \) is YES if and only if the solution for \(i_2 \) is YES.
 - Thus, \(R \) converts YES (NO) instances of \(p_1 \) to YES (NO) instances of \(p_2 \).

• **Polynomial-time reductions**: \(p_1 \overset{P}{\rightarrow} p_2 \)
 - Reductions that run in polynomial time.

If \(p_1 \overset{P}{\rightarrow} p_2 \), then

- If \(p_2 \) is easy, then so is \(p_1 \). \(p_2 \in \mathcal{P} \implies p_1 \in \mathcal{P} \)
- If \(p_1 \) is hard, then so is \(p_2 \). \(p_1 \not\in \mathcal{P} \implies p_2 \not\in \mathcal{P} \)
What are NP-Complete problems?

• These are the hardest problems in NP.

• A problem p is NP-Complete if
 - there is a polynomial-time reduction from every problem in NP to p.
 - $p \in$ NP

• How to prove that a problem is NP-Complete?

• Cook’s Theorem: [1972]
 - The SAT problem is NP-Complete.

Steve Cook, Richard Karp, Leonid Levin
NP-Complete vs NP-Hard

- A problem p is **NP-Complete** if
 - there is a polynomial-time reduction from *every* problem in NP to p.
 - $p \in NP$

- A problem p is **NP-Hard** if
 - there is a polynomial-time reduction from *every* problem in NP to p.
The SAT Problem: an example

• Consider the boolean expression:
 \[C = (a \lor \neg b \lor c) \land (\neg a \lor d \lor \neg e) \land (a \lor \neg d \lor \neg c) \]
• Is \(C \) satisfiable?
• Does there exist a True/False assignments to the boolean variables \(a, b, c, d, e \), such that \(C \) is True?
• Set \(a = \text{True} \) and \(d = \text{True} \). The others can be set arbitrarily, and \(C \) will be true.
• If \(C \) has 40,000 variables and 4 million clauses, then it becomes hard to test this.
• If there are \(n \) boolean variables, then there are \(2^n \) different truth value assignments.
• However, a solution can be quickly verified!
The SAT (Satisfiability) Problem

• **Input:** Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses.

• **Question:** Is C satisfiable?
 - Let $C = C_1 \land C_2 \land \ldots \land C_m$
 - Where each $C_i = (y_1^i \lor y_2^i \lor \ldots \lor y_{k_i}^i)$
 - And each $y_j^i \in \{x_1, \neg x_1, x_2, \neg x_2, \ldots, x_n, \neg x_n\}$
 - We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

• **Steve Cook** showed that the problem of deciding whether a non-deterministic Turing machine T accepts an input w or not can be written as a boolean expression C_T for a SAT problem. The boolean expression will have length bounded by a polynomial in the size of T and w.

• How to now prove Cook’s theorem? Is SAT in NP?
• Can every problem in NP be poly. reduced to it?
The problem classes and their relationships

co-NP ⊆ P ⊆ NP ⊆ NP-C
More **NP-Complete** problems

3SAT

- **Input**: Boolean expression \(C \) in Conjunctive normal form (CNF) in \(n \) variables and \(m \) clauses. Each clause has at most **three** literals.

- **Question**: Is \(C \) satisfiable?
 - Let \(C = C_1 \land C_2 \land \ldots \land C_m \)
 - Where each \(C_i = (y_1^i \lor y_2^i \lor y_3^i) \)
 - And each \(y_j^i \in \{x_1, \neg x_1, x_2, \neg x_2, \ldots, x_n, \neg x_n\} \)
 - We want to know if there exists a truth assignment to all the variables in the boolean expression \(C \) that makes it true.

3SAT is **NP-Complete**.
More \textbf{NP-Complete problems?}

\textbf{2SAT}

- \textbf{Input:} Boolean expression C in Conjunctive normal form (CNF) in n variables and m clauses. Each clause has at most three literals.
- \textbf{Question:} Is C satisfiable?
 - Let $C = C_1 \land C_2 \land \ldots \land C_m$
 - Where each $C_i = (y_i^j \lor y_i^j)$
 - And each $y_i^j \in \{x_1, \neg x_1, x_2, \neg x_2, \ldots, x_n, \neg x_n\}$
 - We want to know if there exists a truth assignment to all the variables in the boolean expression C that makes it true.

\textbf{2SAT is in } P.
3SAT is \textit{NP-Complete}

- 3SAT is in \textit{NP}.
- SAT can be reduced in polynomial time to 3SAT.
- This implies that every problem in \textit{NP} can be reduced in polynomial time to 3SAT. Therefore, 3SAT is \textit{NP-Complete}.
- So, we have to design an algorithm such that:
 - Input: an instance \(C \) of SAT
 - Output: an instance \(C' \) of 3SAT such that satisfiability is retained. In other words, \(C \) is satisfiable if and only if \(C' \) is satisfiable.
3SAT is \textit{NP-Complete}

- Let C be an instance of SAT with clauses C_1, C_2, \ldots, C_m
- Let C_i be a disjunction of $k > 3$ literals.
 $C_i = y_1 \lor y_2 \lor \ldots \lor y_k$
- Rewrite C_i as follows:
 $C'_i = (y_1 \lor y_2 \lor z_1) \land$
 $\quad (\neg z_1 \lor y_3 \lor z_2) \land$
 $\quad (\neg z_2 \lor y_4 \lor z_3) \land$
 $\quad \ldots$
 $\quad (\neg z_{k-3} \lor y_{k-1} \lor y_k)$
- Claim: C_i is satisfiable if and only if C'_i is satisfiable.
2SAT is in P

- If there is only one literal in a clause, it must be set to true.
- If there are two literals in some clause, and if one of them is set to false, then the other must be set to true.
- Using these constraints, it is possible to check if there is some inconsistency.
- How? Homework problem!
The CLIQUE Problem

- A clique is a completely connected subgraph.

CLIQUE
- **Input:** Graph $G(V,E)$ and integer k
- **Question:** Does G have a clique of size k?
CLIQUE is **NP-Complete**

- CLIQUE is in **NP**.
- Reduce 3SAT to CLIQUE in polynomial time.
- \(F = (x_1 \lor \neg x_2 \lor x_3)(\neg x_1 \lor \neg x_3 \lor x_4)(x_2 \lor x_3 \lor \neg x_4)(\neg x_1 \lor \neg x_2 \lor x_3) \)

F is satisfiable if and only if \(G \) has a clique of size \(k \) where \(k \) is the number of clauses in \(F \).