COT 6405: Analysis of Algorithms

Giri Narasimhan ECS 389; Phone: x3748 giri@cs.fiu.edu

www.cs.fiu.edu/~giri/teach/6405Spring04.html

Evaluation

- Exams
- Homework Assignments
- Semester Project
- Class Participation

Search

- You are asked to guess a number X that is known to be an integer lying between integers A and B. How many guesses do you need in the worst case?
- You are asked to guess a positive integer X. How many guesses do you need in the worst case?
- NOTE: No upper bound is known for the number.

Polynomials

- Given a polynomial
- $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$
compute the value of the polynomial for a given value of x.
- How many additions and multiplications are needed?

Celebrity Problem

- A Celebrity is one that knows nobody and that everybody knows.

Celebrity Problem:
INPUT: n persons with a n $\times n$ information matrix.
OUTPUT: Find the "celebrity", if one exists.
MODEL: Only allowable questions are:

- Does person i know person j?
- Naive Algorithm: O(n²) Questions.

Celebrity Problem (Cont’d)

- Induction Hypothesis: We know how to find a celebrity (if one exists) among a set of $n-1$ people.
[The above hypothesis leads to an inefficient solution.]
Given n persons, 3 cases arise:

1. Celebrity is among the first n-1persons
2. Celebrity is the n-th person.
3. No celebrity exists.

Celebrity Problem (Cont’d)

- Induction Hypothesis 2: We know how to find n-2 noncelebrities among a set of n-1 people, i.e., we know how to find at most one person among a set of $n-1$ people that could potentially be a celebrity.
- Resulting algorithm needs [3(n-1)-1] questions.

