
1

COT 6405: Analysis of Algorithms

Giri Narasimhan
ECS 389; Phone: x3748

giri@cs.fiu.edu
www.cs.fiu.edu/~giri/teach/6405Spring04.html

2

Evolution of Data Structures
• Complex problems require complex data structures.
• Simple data types → Lists.
• Applications of lists include: students roster, list of voters, grocery list,

list of transactions, etc.
• Array implementation of list: random access.
• Need for list “operations” arose – “Static” vs. “dynamic” lists. “Storing”

items in list vs. “Maintaining” items in list.
• Lot of research on “Sorting” and “Searching”.
• “Inserting” in a specified location in a list caused the following evolution:

Array implementation → Linked list implementation.
• Other linear structures e.g., stacks, queues, etc.

3

Evolution of Data Structures
• Trees made hierarchical organization of data easy to handle. Applications of

trees: administrative hierarchy in a business set up, storing an arithmetic
expression, organization of the functions calls of a recursive program, etc.

• Search trees (e.g., BST) were designed to make search and retrieval efficient in
trees. A BST may not allow fast search or retrieval, if it is very unbalanced,
since the time complexities of the operations depended on the height of the tree.

• Graphs generalize trees; model more general networks.
• Abstract data types. Advantages include: Encapsulation of data and operations,

hiding of unnecessary details, localization and debugging of errors, ease of use
since interface is clearly specified, ease of program development, etc.

4

5

Sorting Algorithms
• Selection Sort
• Insertion Sort
• Bubble Sort
• Shaker Sort
• Shell Sort
• Merge Sort
• Heap Sort
• Quick Sort

• Bucket & Radix Sort
• Counting Sort

6

Algorithm Invariants
• Selection Sort

• iteration k: the k smallest items are in correct location.
• Insertion Sort

• iteration k: the first k items are in sorted order.
• Bubble Sort

• In each pass, every item that does not have a smaller item after it,
is moved as far up in the list as possible.

• Iteration k: k smallest items are in the correct location.
• Shaker Sort

• In each odd (even) numbered pass, every item that does not have a
smaller (larger) item after it, is moved as far up (down) in the list
as possible.

• Iteration k: the k/2 smallest and largest items are in the correct
location.

7

Algorithm Invariants (Cont’d)
• Merge (many lists)

– Iteration k: the k smallest items from the lists are merged.
• Heapify

– Iteration with i = k: Subtrees with roots at indices k or larger
satisfy the heap property.

• HeapSort
– Iteration k: Largest k items are in the right location.

• Partition (two sublists)
– Iteration k (with pointers at i and j): items in locations [1..I]

(locations [i+1..j]) are at least as small (large) as the pivot.

8

Figure 8.5
Shellsort after each pass if the increment sequence is {1, 3, 5}

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

9

ShellSort
public static void shellsort(Comparable [] a)

{
for(int gap = a.length / 2; gap > 0;

gap = gap == 2 ? 1 : (int) (gap / 2.2))
for(int i = gap; i < a.length; i++)
{

Comparable tmp = a[i];
int j = i;

for(; j >= gap && tmp.compareTo(a[j - gap]) < 0; j -= gap)
a[j] = a[j - gap];

a[j] = tmp;
}

}

10

Sorting Algorithms
• Number of Comparisons
• Number of Data Movements
• Additional Space Requirements

11

Sorting Algorithms
• Selection Sort
• Insertion Sort
• Bubble Sort
• Shaker Sort

• Merge Sort
• Heap Sort
• Quick Sort

• Bucket & Radix Sort
• Counting Sort

12

Animation Demos
http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/

13

QuickSort(A, p, r)
if (p < r) then

q = Partition(A, p, r)
QuickSort(A, p, q-1)
QuickSort(A, q+1, r)

Partition(A, p, r)
x = A[r]
i = p-1
for j = p to r-1 do

if A[j] <= x) then
i++
exchange(A[i], A[j])

exchange(A[i+1], A[r])
return i+1

Page 146, CLR

14

HeapSort
Analysis

15

Bucket Sort
• N values in the range [a..a+m-1]
• For e.g., sort a list of 50 scores in the range [0..9].
• Algorithm

– Make m buckets [a..a+m-1]
– As you read elements throw into appropriate bucket
– Output contents of buckets [0..m] in that order

• Time O(N+m)

16

Stable Sort
• A sort is stable if equal elements appear in the same order

in both the input and the output.
• Which sorts are stable? Homework!

17

Radix Sort
3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3

3 2 9

2 9

4

3 5 5

3 6

8

4 3 6

3 9

3

4 5 7

5 5

4

6 5 7

5 7

6

7 2 0

5 7 8 3 9

Algorithm
for i = 1 to d do

sort array A on digit i using a stable sort algorithm

Time Complexity: O((n+k)d)

18

Counting Sort

1 2 3 4 5 6 7 8

2 5 3 0 2 3 0 3Initial Array

0 1 2 3 4 5
2 0 2 3 0 1

Counts

0 1 2 3 4 5
2 2 4 7 7 8

Cumulative
Counts

	COT 6405: Analysis of Algorithms
	Evolution of Data Structures
	Evolution of Data Structures
	Sorting Algorithms
	Algorithm Invariants
	Algorithm Invariants (Cont’d)
	ShellSort
	Sorting Algorithms
	Sorting Algorithms
	Animation Demos
	Bucket Sort
	Stable Sort
	Radix Sort
	Counting Sort

