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Evolution of Data Structures
• Complex problems require complex data structures.
• Simple data types → Lists. 
• Applications of lists include: students roster, list of voters, grocery list, 

list of transactions, etc.
• Array implementation of list: random access.
• Need for list “operations” arose – “Static” vs. “dynamic” lists. “Storing” 

items in list vs. “Maintaining” items in list. 
• Lot of research on “Sorting” and “Searching”. 
• “Inserting” in a specified location in a list caused the following evolution: 

Array implementation → Linked list implementation.
• Other linear structures e.g., stacks, queues, etc.
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Evolution of Data Structures
• Trees made hierarchical organization of data easy to handle. Applications of 

trees: administrative hierarchy in a business set up, storing an arithmetic 
expression, organization of the functions calls of a recursive program, etc.

• Search trees (e.g., BST) were designed to make search and retrieval efficient in 
trees. A BST may not allow fast search or retrieval, if it is very unbalanced, 
since the time complexities of the operations depended on the height of the tree. 

• Graphs generalize trees; model more general networks. 
• Abstract data types. Advantages include: Encapsulation of data and operations, 

hiding of unnecessary details, localization and debugging of errors, ease of use 
since interface is clearly  specified, ease of program development, etc.



4



5

Sorting Algorithms
• Selection Sort
• Insertion Sort
• Bubble Sort
• Shaker Sort
• Shell Sort
• Merge Sort
• Heap Sort
• Quick Sort

• Bucket & Radix Sort
• Counting Sort
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Algorithm Invariants
• Selection Sort

• iteration k: the k smallest items are in correct location.
• Insertion Sort

• iteration k: the first k items are in sorted order.
• Bubble Sort

• In each pass, every item that does not have a smaller item after it, 
is moved as far up in the list as possible.

• Iteration k: k smallest items are in the correct location.
• Shaker Sort

• In each odd (even) numbered pass, every item that does not have a 
smaller (larger) item after it, is moved as far up (down) in the list 
as possible.

• Iteration k: the k/2 smallest and largest items are in the correct 
location.
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Algorithm Invariants (Cont’d)
• Merge (many lists)

– Iteration k: the k smallest items from the lists are merged.
• Heapify

– Iteration with i = k: Subtrees with roots at indices k or larger 
satisfy the heap property.

• HeapSort
– Iteration k: Largest k items are in the right location.

• Partition (two sublists)
– Iteration k (with pointers at i and j): items in locations [1..I] 

(locations [i+1..j]) are at least as small (large) as the pivot.
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Figure 8.5
Shellsort after each pass if the increment sequence is {1, 3, 5}

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss      © 2002  Addison Wesley
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ShellSort
public static void shellsort( Comparable [ ] a )

{
for( int gap = a.length / 2; gap > 0;

gap = gap == 2 ? 1 : (int) ( gap / 2.2 ) )
for( int i = gap; i < a.length; i++ )
{

Comparable tmp = a[ i ];
int j = i;

for( ; j >= gap && tmp.compareTo( a[ j - gap ] ) < 0; j -= gap )
a[ j ] = a[ j - gap ];

a[ j ] = tmp;
}

}
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Sorting Algorithms
• Number of Comparisons
• Number of Data Movements
• Additional Space Requirements
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Sorting Algorithms
• Selection Sort
• Insertion Sort
• Bubble Sort
• Shaker Sort

• Merge Sort
• Heap Sort
• Quick Sort

• Bucket & Radix Sort
• Counting Sort
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Animation Demos
http://www-cse.uta.edu/~holder/courses/cse2320/lectures/applets/sort1/heapsort.html

http://cg.scs.carleton.ca/~morin/misc/sortalg/
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QuickSort(A, p, r)
if (p < r) then

q = Partition(A, p, r)
QuickSort(A, p, q-1)
QuickSort(A, q+1, r)

Partition(A, p, r)
x = A[r]
i = p-1
for j = p to r-1 do 

if A[j] <= x) then 
i++
exchange(A[i], A[j])

exchange(A[i+1], A[r])
return i+1

Page 146, CLR
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HeapSort
Analysis
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Bucket Sort
• N values in the range [a..a+m-1]
• For e.g., sort a list of 50 scores in the range [0..9].
• Algorithm

– Make m buckets [a..a+m-1]
– As you read elements throw into appropriate bucket
– Output contents of buckets [0..m] in that order

• Time O(N+m)
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Stable Sort
• A sort is stable if equal elements appear in the same order 

in both the input and the output.
• Which sorts are stable? Homework!
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Radix Sort
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Algorithm
for i = 1 to d do

sort array A on digit i using a stable sort algorithm

Time Complexity: O((n+k)d)
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Counting Sort
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