Sorting Algorithms

- Selection Sort
- Insertion Sort
- Bubble Sort
- Shaker Sort
- Shell Sort
- Merge Sort
- Heap Sort
- Quick Sort
- Bucket & Radix Sort
- Counting Sort
Bucket Sort

- \(N \) values in the range \([a..a+m-1]\)
- For e.g., sort a list of 50 scores in the range \([0..9]\).
- Algorithm
 - Make \(m \) buckets \([a..a+m-1]\)
 - As you read elements throw into appropriate bucket
 - Output contents of buckets \([0..m]\) in that order
- Time \(O(N+m) \)
Stable Sort

- A sort is stable if equal elements appear in the same order in both the input and the output.
- Which sorts are stable? Homework!
Radix Sort

<table>
<thead>
<tr>
<th>3 2 9</th>
<th>7 2 0</th>
<th>7 2 0</th>
<th>3 2 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5 7</td>
<td>3 5 5</td>
<td>3 2 9</td>
<td>3 5 5</td>
</tr>
<tr>
<td>6 5 7</td>
<td>4 3 6</td>
<td>4 3 6</td>
<td>4 3 6</td>
</tr>
<tr>
<td>8 3 9</td>
<td>4 5 7</td>
<td>8 3 9</td>
<td>4 5 7</td>
</tr>
<tr>
<td>4 3 6</td>
<td>6 5 7</td>
<td>3 5 5</td>
<td>6 5 7</td>
</tr>
<tr>
<td>7 2 0</td>
<td>3 2 9</td>
<td>4 5 7</td>
<td>7 2 0</td>
</tr>
<tr>
<td>3 5 5</td>
<td>8 3 9</td>
<td>6 5 7</td>
<td>8 3 9</td>
</tr>
</tbody>
</table>

Algorithm

```plaintext```
for i = 1 to d do
    sort array A on digit i using a stable sort algorithm
```

Time Complexity: $O((n+k)d)$
Counting Sort

Initial Array

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Counts

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Cumulative Counts

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Order Statistics

- **Maximum, Minimum** \(n-1 \) comparisons

 7 3 1 9 4 8 2 5 0 6

- **MinMax**
 - \(2(n-1) \) comparisons
 - \(3n/2 \) comparisons

- **Max and 2ndMax**
 - \((n-1) + (n-2) \) comparisons
 - ???
Upper & Lower Bounds

- Algorithm A solves problem P if it terminates & gives the correct output on every possible input.
- Algorithm A solving problem P has time complexity $f(n)$ if it takes time at most $f(n)$ for every input of length n.
- $U(n)$ is an upper bound on the time complexity of P, if there exists an algorithm A that solves P and has time complexity $U(n)$.
- $L(n)$ is a lower bound on the time complexity of P, if there exists NO algorithm that solves P and has time complexity asymptotically less than $L(n)$.
Upper & Lower Bounds for Maximum

- Naïve Algorithm \(A \) solves the Maximum problem, because it terminates in \(n \) iterations for every possible input of length \(n \) and outputs the correct maximum.
- Naïve Algorithm \(A \) has time complexity \(O(n) \).
- \(O(n) \) is an upper bound on the time complexity of the maximum problem.
- \((n-1) \) is a lower bound on the time complexity of the maximum problem, because there exists NO algorithm that solves it with less than \(n-1 \) comparisons.
- **WHY?** In 1 comparison, at most 1 item is eliminated from being the maximum. How many to eliminate?
- Therefore, no matter how smart you are you cannot design an algorithm that solves the Maximum problem in less than \(n-1 \) comparisons on all inputs of length \(n \).
Upper Bound on Sorting n items

- $O(n \log n)$ is the upper bound for sorting.
- WHY?
 - HeapSort
 - MergeSort
- What about QuickSort?
 - $O(n^2)$ in the worst case!
Lower Bound for Sorting: Decision Tree Model

- The decision tree model models all comparison-based algorithms that solve the sorting problem. These algorithms perform no other “algebraic” operations on input values. They may perform data movements & other statements.
- Imagine a binary tree that models the algorithm, where
 - each node corresponds to a comparison
 - the edges to the children correspond to the two outcomes of the comparison: YES/NO
 - Leaves correspond to the output. WHAT IS THE OUTPUT?
- Decision tree for InsertionSort on 4 items?
- What can we say about such decision trees?
- Given an input, the algorithm follows a path from the root to a leaf.
Lower Bound for Sorting: Cont’d

- Leaves correspond to outputs.
- Paths correspond to a path followed on a specific input. Time complexity = height of decision tree.
- Different input orders must force different paths or else the output will end up being the same, giving rise to incorrect sorted orders.
- Therefore number of leaves is at least as large as the number of different input orders.
 - How many?
 - n!
- Height of the decision tree is at least \(\log(n!) \). Hence lower bound is \(O(\log(n!)) = O(n \log n) \)