Sorting Algorithms

- Selection Sort
- Insertion Sort
- Bubble Sort
- Shaker Sort
- Shell Sort
- Merge Sort
- Heap Sort
- Quick Sort
- Bucket \& Radix Sort
- Counting Sort

Bucket Sort

- N values in the range [$a . . a+m-1$]
- For e.g., sort a list of 50 scores in the range [0..9].
- Algorithm
- Make m buckets [a..a+m-1]
- As you read elements throw into appropriate bucket
- Output contents of buckets [0..m] in that order
- Time $O(N+m)$

Stable Sort

- A sort is stable if equal elements appear in the same order in both the input and the output.
- Which sorts are stable? Homework!

Radix Sort

3	2	9	7	2	0	7	2	0	3	2	9
4	5	7	3	5	5	3	2	9	3	5	5
6	5	7	4	3	6	4	3	6	4	3	6
8	3	9	4	5	7	8	3	9	4	5	7
4	3	6	6	5	7	3	5	5	6	5	7
7	2	0	3	2	9	4	5	7	7	2	0
3	5	5	8	3	9	6	5	7	8	3	9

Algorithm
for $\mathrm{i}=1$ to d do
sort array A on digit i using a stable sort algorithm
Time Complexity: $\mathrm{O}((\mathrm{n}+\mathrm{k}) \mathrm{d})$

Counting Sort

\section*{Initial Array
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 |}

Counts \quad| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0 | 2 | 3 | 0 | 1 |

Cumulative Counts

0	1	2	3	4	5
2	2	4	7	7	8

Order Statistics

- Maximum, Minimum n-1 comparisons

- MinMax
- 2(n-1) comparisons
- 3n/2 comparisons
- Max and 2ndMax
- $(n-1)+(n-2)$ comparisons
- ???

Upper \& Lower Bounds

- Algorithm A solves problem P if it terminates \& gives the correct output on every possible input.
- Algorithm A solving problem P has time complexity $f(n)$ if it takes time at most $f(n)$ for every input of length n.
- $U(n)$ is an upper bound on the time complexity of P, if there exists an algorithm A that solves P and has time complexity $U(n)$.
- $L(n)$ is a lower bound on the time complexity of P, if there exists NO algorithm that solves P and has time complexity asymptotically less than $L(n)$.

Upper \& Lower Bounds for Maximum

- Naïve Algorithm A solves the Maximum problem, because it terminates in n iterations for every possible input of length n and outputs the correct maximum.
- Naïve Algorithm A has time complexity $O(n)$.
- $O(n)$ is an upper bound on the time complexity of the maximum problem.
- $(n-1)$ is a lower bound on the time complexity of the maximum problem, because there exists NO algorithm that solves it with less than n-1 comparisons.
- WHY? In 1 comparison, at most 1 item is eliminated from being the maximum. How many to eliminate?
- Therefore, no matter how smart you are you cannot design an algorithm that solves the Maximum problem in less than $n-1$ comparisons on all inputs of length n.

Upper Bound on Sorting n items

- $O(n \log n)$ is the upper bound for sorting.
- WHY?
- HeapSort
- MergeSort
- What about QuickSort?
- $O\left(n^{2}\right)$ in the worst case!

Lower Bound for Sorting: Decision Tree Model

- The decision tree model models all comparison-based algorithms that solve the sorting problem. These algorithms perform no other "algebraic" operations on input values.
They may perform data movements \& other statements.
- Imagine a binary tree that models the algorithm, where
- each node corresponds to a comparison
- the edges to the children correspond to the two outcomes of the comparison: YES/NO
- Leaves correspond to the output. WHAT IS THE OUTPUT?
- Decision tree for InsertionSort on 4 items?
- What can we say about such decision trees?
- Given an input, the algorithm follows a path from the root to a leaf.

Lower Bound for Sorting: Cont’d

- Leaves correspond to outputs.
- Paths correspond to a path followed on a specific input. Time complexity = height of decision tree.
- Different input orders must force different paths or else the output will end up being the same, giving rise to incorrect sorted orders.
- Therefore number of leaves is at least as large as the number of different input orders.
- HOW MANY?
- n!
- Height of the decision tree is at least $\log (n!)$. Hence lower bound is $O(\log (n!))=O(n \log n)$

