
01/22/04 Lecture 5 1

Sorting Algorithms

• Selection Sort
• Insertion Sort
• Bubble Sort
• Shaker Sort
• Shell Sort
• Merge Sort
• Heap Sort
• Quick Sort

• Bucket & Radix Sort
• Counting Sort

01/22/04 Lecture 5 2

Bucket Sort

• N values in the range [a..a+m-1]
• For e.g., sort a list of 50 scores in the range [0..9].
• Algorithm

– Make m buckets [a..a+m-1]
– As you read elements throw into appropriate bucket
– Output contents of buckets [0..m] in that order

• Time O(N+m)

01/22/04 Lecture 5 3

Stable Sort

• A sort is stable if equal elements appear in the
same order in both the input and the output.

• Which sorts are stable? Homework!

01/22/04 Lecture 5 4

Radix Sort

3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

Algorithm
for i = 1 to d do

sort array A on digit i using a stable sort algorithm

Time Complexity: O((n+k)d)

01/22/04 Lecture 5 5

Counting Sort

1 2 3 4 5 6 7 8
2 5 3 0 2 3 0 3

0 1 2 3 4 5
2 0 2 3 0 1

0 1 2 3 4 5
2 2 4 7 7 8

Initial Array

Counts

Cumulative
Counts

01/22/04 Lecture 5 6

Order Statistics

• Maximum, Minimum n-1 comparisons

• MinMax
– 2(n-1) comparisons
– 3n/2 comparisons

• Max and 2ndMax
– (n-1) + (n-2) comparisons
– ???

7 3 1 9 4 8 2 5 0 6

01/22/04 Lecture 5 7

Upper & Lower Bounds

• Algorithm A solves problem P if it terminates &
gives the correct output on every possible input.

• Algorithm A solving problem P has time complexity
f(n) if it takes time at most f(n) for every input of
length n.

• U(n) is an upper bound on the time complexity of P,
if there exists an algorithm A that solves P and
has time complexity U(n).

• L(n) is a lower bound on the time complexity of P,
if there exists NO algorithm that solves P and has
time complexity asymptotically less than L(n).

01/22/04 Lecture 5 8

Upper & Lower Bounds for Maximum

• Naïve Algorithm A solves the Maximum problem, because it
terminates in n iterations for every possible input of length
n and outputs the correct maximum.

• Naïve Algorithm A has time complexity O(n).
• O(n) is an upper bound on the time complexity of the

maximum problem.
• (n-1) is a lower bound on the time complexity of the

maximum problem, because there exists NO algorithm that
solves it with less than n-1 comparisons.

• WHY? In 1 comparison, at most 1 item is eliminated from
being the maximum. How many to eliminate?

• Therefore, no matter how smart you are you cannot design
an algorithm that solves the Maximum problem in less than
n-1 comparisons on all inputs of length n.

01/22/04 Lecture 5 9

Upper Bound on Sorting n items

• O(n log n) is the upper bound for sorting.
• WHY?

– HeapSort
– MergeSort

• What about QuickSort?
– O(n2) in the worst case!

01/22/04 Lecture 5 10

Lower Bound for Sorting: Decision Tree Model

• The decision tree model models all comparison-based
algorithms that solve the sorting problem. These algorithms
perform no other “algebraic” operations on input values.
They may perform data movements & other statements.

• Imagine a binary tree that models the algorithm, where
– each node corresponds to a comparison
– the edges to the children correspond to the two outcomes of

the comparison: YES/NO
– Leaves correspond to the output. WHAT IS THE OUTPUT?

• Decision tree for InsertionSort on 4 items?
• What can we say about such decision trees?
• Given an input, the algorithm follows a path from the root to

a leaf.

01/22/04 Lecture 5 11

Lower Bound for Sorting: Cont’d

• Leaves correspond to outputs.
• Paths correspond to a path followed on a specific

input. Time complexity = height of decision tree.
• Different input orders must force different paths

or else the output will end up being the same,
giving rise to incorrect sorted orders.

• Therefore number of leaves is at least as large as
the number of different input orders.
– HOW MANY?
– n!

• Height of the decision tree is at least log(n!).
Hence lower bound is O(log(n!)) = O(n log n)

	Sorting Algorithms
	Bucket Sort
	Stable Sort
	Radix Sort
	Counting Sort
	Order Statistics
	Upper & Lower Bounds
	Upper & Lower Bounds for Maximum
	Upper Bound on Sorting n items
	Lower Bound for Sorting: Decision Tree Model
	Lower Bound for Sorting: Cont’d

