Sorting Algorithms

- Selection Sort
- Insertion Sort
- Bubble Sort
- Shaker Sort
- Shell Sort
- Merge Sort
- Heap Sort
- Quick Sort
- Bucket & Radix Sort
- Counting Sort

Bucket Sort

- N values in the range [a..a+m-1]
- For e.g., sort a list of 50 scores in the range [0..9].
- Algorithm
 - Make m buckets [a..a+m-1]
 - As you read elements throw into appropriate bucket
 - Output contents of buckets [0..m] in that order
- Time O(N+m)

Stable Sort

- A sort is stable if equal elements appear in the same order in both the input and the output.
- Which sorts are stable? Homework!

Radix Sort

Algorithm

for i = 1 to d do

sort array A on digit i using a stable sort algorithm

Time Complexity: O((n+k)d)

Counting Sort

	1	i	2	3	4	1	5	6		7	8
Initial Array	2	2	5	3	0)	2	3	3	0	3
Counts	[0	1		2	3	4	4	5		
		2	0		2	3	(0	1		
Cumulative		0	1		2	3	3	4	Ę	5	
Counts		2		2	4	7	7	7	8	3	

Order Statistics

Maximum, Minimum
 n-1 comparisons

- MinMax
 - 2(n-1) comparisons
 - 3n/2 comparisons
- Max and 2ndMax
 - (n-1) + (n-2) comparisons
 - ???

Upper & Lower Bounds

- Algorithm A solves problem P if it terminates & gives the correct output on every possible input.
- Algorithm A solving problem P has <u>time complexity</u> f(n) if it takes time at most f(n) for every input of length n.
- U(n) is an <u>upper bound</u> on the time complexity of P, if there exists an algorithm A that solves P and has time complexity U(n).
- L(n) is a <u>lower bound</u> on the time complexity of P, if there exists NO algorithm that solves P and has time complexity asymptotically less than L(n).

Upper & Lower Bounds for Maximum

- Naïve Algorithm A solves the Maximum problem, because it terminates in n iterations for every possible input of length n and outputs the correct maximum.
- Naïve Algorithm A has <u>time complexity</u> O(n).
- O(n) is an <u>upper bound</u> on the time complexity of the maximum problem.
- (n-1) is a <u>lower bound</u> on the time complexity of the maximum problem, because there exists NO algorithm that solves it with less than n-1 comparisons.
- WHY? In 1 comparison, at most 1 item is eliminated from being the maximum. How many to eliminate?
- Therefore, no matter how smart you are you cannot design an algorithm that solves the Maximum problem in less than n-1 comparisons on all inputs of length n.

Upper Bound on Sorting n items

- O(n log n) is the upper bound for sorting.
- WHY?
 - HeapSort
 - MergeSort
- What about QuickSort?
 - $O(n^2)$ in the worst case!

Lower Bound for Sorting: Decision Tree Model

- The <u>decision tree model</u> models all <u>comparison-based</u> algorithms that solve the <u>sorting</u> problem. These algorithms perform no other "algebraic" operations on input values. They may perform data movements & other statements.
- Imagine a binary tree that models the algorithm, where
 - each node corresponds to a comparison
 - the edges to the children correspond to the two outcomes of the comparison: YES/NO
 - Leaves correspond to the output. WHAT IS THE OUTPUT?
- Decision tree for InsertionSort on 4 items?
- What can we say about such decision trees?
- Given an input, the algorithm follows a path from the root to a leaf.

Lower Bound for Sorting: Cont'd

- Leaves correspond to outputs.
- Paths correspond to a path followed on a specific input. Time complexity = height of decision tree.
- Different input orders must force different paths or else the output will end up being the same, giving rise to incorrect sorted orders.
- Therefore number of leaves is at least as large as the number of different input orders.
 - HOW MANY?
 - n!
- Height of the decision tree is at least log(n!).
 Hence lower bound is O(log(n!)) = O(n log n)