
02/03/04 Lecture 8 1

Augmented Data Structures

• Why is it needed?
– Because basic data structures not enough for all operations
– storing extra information helps execute special operations more

efficiently.
• Can any data structure be augmented?

– Yes. Any data structure can be augmented.
• Can a data structure be augmented with any additional

information?
– Theoretically, yes.

• How to choose which additional information to store.
– Only if we can maintain the additional information efficiently

under all operations. That means, with additional information,
we need to perform old and new operations efficiently maintain
the additional information efficiently.

02/03/04 Lecture 8 2

New Operations on RB-Trees

• Basic operations
– RB-Search, RB-Insert, RB-Delete

• New Operations
– Rank(T,x)
– Select(T,k)
– NO EFFICIENT WAY TO IMPLEMENT THEM!
– Unless more information is stored in each node!

• What information to be added in each node?
– Rank information

• Very useful but hard to maintain under Insert/Delete
– Size information

• Useful and easy to maintain under Insert/Delete

02/03/04 Lecture 8 3

How to augment data structures

1. choose an underlying data structure
2. determine additional information to be maintained

in the underlying data structure,
3. develop new operations,
4. verify that the additional information can be

maintained for the modifying operations on the
underlying data structure.

02/03/04 Lecture 8 4

RB-Tree Augmentation

• Augment x with Size(x), where
– Size(x) = size of subtree rooted at x
– Size(NIL) = 0

02/03/04 Lecture 8 5

OS-Select

OS-SELECT(x,i) //page 304
// Select the node with rank i
// in the subtree rooted at x
1. r ≠ size[left[x]]+1
2. if i = r then
3. return x
4. elseif i < r then
5. return OS-SELECT (left[x], i)
6. else return OS-SELECT (right[x], i-r)

02/03/04 Lecture 8 6

OS-Rank

OS-RANK(x,y)
// Different from text (recursive version)
// Find the rank of y in the subtree rooted at x
1 r = size[left[y]] + 1
2 if x = y then return r
3 else if (key[x] < key[y]) then
4 return OS-RANK(x,left[y])
5 else return r + OS-RANK(x,right[y])

Time Complexity O(log n)

02/03/04 Lecture 8 7

Augmenting RB-Trees

Theorem 14.1, page 309
Let f be a field that augments a red-black tree T
with n nodes, and f(x) can be computed using only
the information in nodes x, left[x], and right[x],
including f[left[x]] and f[right[x]].
Then, we can maintain f(x) during insertion and
deletion without asymptotically affecting the
O(lgn) performance of these operations.

For example,
size[x] = size[left[x]] + size[right[x]] + 1
rank[x] = ?

02/03/04 Lecture 8 8

Examples of augmenting information for RB-Trees

• Parent
• Height
• Any associative function on all previous values or

all succeeding values.
• Next
• Previous

02/03/04 Lecture 8 9

Interval Trees

• Need: Dynamic data structure to store time
intervals

• Application: Maintain schedule for set of seminars
• Operations: Insert, Delete
• Every interval j has: low[j], high[j]
• Data Structure:

– Augment RB-Tree so that it can store intervals.
– Ordering based on what key? low values? high values?

(high+low)/2 values? (high-low) values?
– Note that insert and delete are still efficient.

• New Operation: Search (find any overlapping
interval)
– Problem with Search!

02/03/04 Lecture 8 10

Augmented Information

• low, high, max
• max[x] = rightmost high value of all intervals in

subtree rooted at x
• The value max[x] of each node can be written as:

max[x] = Max { high[int[x]], max[left[x]],
max[right[x]] }

• Therefore it can be maintained efficiently under
insertions and deletions

02/03/04 Lecture 8 11

Interval-Search

INTERVAL-SEARCH (T, j)
// finds an interval in tree T that overlaps interval j,
// else return NIL.
1. x = root[T]
2. while x ≠ NIL and j does not overlap int[x] do
3. if left[x] ≠ NIL and max[left[x]]>=low[j] then
4. x = left[x]
5. else x = right[x]
6. return x

Time Complexity O(log n)

	Augmented Data Structures
	New Operations on RB-Trees
	How to augment data structures
	RB-Tree Augmentation
	OS-Select
	OS-Rank
	Augmenting RB-Trees
	Examples of augmenting information for RB-Trees
	Interval Trees
	Augmented Information
	Interval-Search

