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Augmented Data Structures

• Why is it needed?
– Because basic data structures not enough for all operations
– storing extra information helps execute special operations more 

efficiently. 
• Can any data structure be augmented? 

– Yes. Any data structure can be augmented. 
• Can a data structure be augmented with any additional 

information? 
– Theoretically, yes. 

• How to choose which additional information to store. 
– Only if we can maintain the additional information efficiently 

under all operations. That means, with additional information, 
we need to perform old and new operations efficiently maintain 
the additional information efficiently.



02/05/04 Lecture 9 2

How to augment data structures

1. choose an underlying data structure
2. determine additional information to be maintained 

in the underlying data structure,
3. develop new operations,
4. verify that the additional information can be 

maintained for the modifying operations on the 
underlying data structure.
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Interval Trees

• Need: Dynamic data structure to store time 
intervals

• Application: Maintain schedule for set of seminars
• Operations: Insert, Delete
• Every interval j has: low[j], high[j]
• Data Structure: 

– Augment RB-Tree so that it can store intervals.
– Ordering based on what key? low values? high values? 

(high+low)/2 values? (high-low) values?
– Note that insert and delete are still efficient.

• New Operation: Search (find any overlapping 
interval) 
– Problem with Search! 
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Augmented Information

• low, high, max
• max[x] = rightmost high value of all intervals in 

subtree rooted at x
• The value max[x] of each node can be written as:

max[x] = Max { high[int[x]], max[left[x]], 
max[right[x]] }

• Therefore it can be maintained efficiently under 
insertions and deletions
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Interval-Search

INTERVAL-SEARCH (T, j)
// finds an interval in tree T that overlaps interval j, 
// else return NIL.
1. x = root[T]
2. while x ≠ NIL and j does not overlap int[x] do 
3. if left[x] ≠ NIL and max[left[x]]>=low[j] then
4. x = left[x]
5. else    x = right[x]
6. return x

Time Complexity O(log n)
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Greedy Algorithms

• Given a set of activities (si, fi), we want to 
schedule the maximum number of non-overlapping 
activities.

• GREEDY-ACTIVITY-SELECTOR (s, f)
1. n = length[s]
2. S = {a1}
3. i = 1
4. for m = 2 to n do
5. if sm is not before fi then
6. S = S U {am}
7. i = m
8. return S



02/05/04 Lecture 9 7

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], 
[8,12], [2,13], [12,14] -- Sorted by finish times

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], 
[8,12], [2,13], [12,14]

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], 
[8,12], [2,13], [12,14]

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], 
[8,12], [2,13], [12,14]

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], 
[8,12], [2,13], [12,14]

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11], 
[8,12], [2,13], [12,14]
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Why does it work?

• THEOREM
Let A be a set of activities and let a1 be the 
activity with the earliest finish time. Then activity 
a1 is in some maximum-sized subset of non-
overlapping activities. 

• PROOF
Let S’ be a solution that does not contain a1. Let a’1
be the activity with the earliest finish time in S’. 
Then replacing a’1 by a1 gives a solution S of the 
same size. 
Why are we allowed to replace? Why is it of the 
same size?
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