
02/05/04 Lecture 9 1

Augmented Data Structures

• Why is it needed?
– Because basic data structures not enough for all operations
– storing extra information helps execute special operations more

efficiently.
• Can any data structure be augmented?

– Yes. Any data structure can be augmented.
• Can a data structure be augmented with any additional

information?
– Theoretically, yes.

• How to choose which additional information to store.
– Only if we can maintain the additional information efficiently

under all operations. That means, with additional information,
we need to perform old and new operations efficiently maintain
the additional information efficiently.

02/05/04 Lecture 9 2

How to augment data structures

1. choose an underlying data structure
2. determine additional information to be maintained

in the underlying data structure,
3. develop new operations,
4. verify that the additional information can be

maintained for the modifying operations on the
underlying data structure.

02/05/04 Lecture 9 3

Interval Trees

• Need: Dynamic data structure to store time
intervals

• Application: Maintain schedule for set of seminars
• Operations: Insert, Delete
• Every interval j has: low[j], high[j]
• Data Structure:

– Augment RB-Tree so that it can store intervals.
– Ordering based on what key? low values? high values?

(high+low)/2 values? (high-low) values?
– Note that insert and delete are still efficient.

• New Operation: Search (find any overlapping
interval)
– Problem with Search!

02/05/04 Lecture 9 4

Augmented Information

• low, high, max
• max[x] = rightmost high value of all intervals in

subtree rooted at x
• The value max[x] of each node can be written as:

max[x] = Max { high[int[x]], max[left[x]],
max[right[x]] }

• Therefore it can be maintained efficiently under
insertions and deletions

02/05/04 Lecture 9 5

Interval-Search

INTERVAL-SEARCH (T, j)
// finds an interval in tree T that overlaps interval j,
// else return NIL.
1. x = root[T]
2. while x ≠ NIL and j does not overlap int[x] do
3. if left[x] ≠ NIL and max[left[x]]>=low[j] then
4. x = left[x]
5. else x = right[x]
6. return x

Time Complexity O(log n)

02/05/04 Lecture 9 6

Greedy Algorithms

• Given a set of activities (si, fi), we want to
schedule the maximum number of non-overlapping
activities.

• GREEDY-ACTIVITY-SELECTOR (s, f)
1. n = length[s]
2. S = {a1}
3. i = 1
4. for m = 2 to n do
5. if sm is not before fi then
6. S = S U {am}
7. i = m
8. return S

02/05/04 Lecture 9 7

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11],
[8,12], [2,13], [12,14] -- Sorted by finish times

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11],
[8,12], [2,13], [12,14]

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11],
[8,12], [2,13], [12,14]

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11],
[8,12], [2,13], [12,14]

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11],
[8,12], [2,13], [12,14]

• [1,4], [3,5], [0,6], [5,7], [3,8], [5,9], [6,10], [8,11],
[8,12], [2,13], [12,14]

02/05/04 Lecture 9 8

Why does it work?

• THEOREM
Let A be a set of activities and let a1 be the
activity with the earliest finish time. Then activity
a1 is in some maximum-sized subset of non-
overlapping activities.

• PROOF
Let S’ be a solution that does not contain a1. Let a’1
be the activity with the earliest finish time in S’.
Then replacing a’1 by a1 gives a solution S of the
same size.
Why are we allowed to replace? Why is it of the
same size?

	Augmented Data Structures
	How to augment data structures
	Interval Trees
	Augmented Information
	Interval-Search
	Greedy Algorithms
	
	Why does it work?

