
02/26/04 Lecture 14 1

Dynamic Programming vs. Divide-&-conquer

• Divide-&-conquer works best when all subproblems are
independent. So, pick the partition that makes the algorithm
most efficient. Then simply combine their solutions to solve
the entire problem.

• Dynamic programming is needed when subproblems are
dependent and we don’t know where to partition the problem.
For example, let S1= {ALPHABET}, and S2 = {HABITAT}.
Consider the subproblem with S1′ = {ALPH}, S2′ = {HABI}.

Then, LCS (S1′, S2′) + LCS (S1-S1′, S2-S2′) ≠ LCS(S1, S2)
• Divide-&-conquer is best suited for the case when no

“overlapping subproblems” are encountered.
• In dynamic programming algorithms, we typically solve each

subproblem only once and store their solutions. But this is at
the cost of space.

02/26/04 Lecture 14 2

Dynamic programming vs Greedy

1. Dynamic Programming solves the sub-problems bottom up.
The problem can’t be solved until we find all solutions of
sub-problems. The solution comes up when the whole problem
appears.
Greedy solves the sub-problems from top down. We first
need to find the greedy choice for a problem, then reduce
the problem to a smaller one. The solution is obtained when
the whole problem disappears.

2. Dynamic Programming has to try every possibility before
solving the problem. It is much more expensive than greedy.
However, there are some problems that greedy can not solve
while dynamic programming can. Therefore, we first try
greedy algorithm. If it fails then try dynamic programming.

02/26/04 Lecture 14 3

Fractional Knapsack Problem

• Burglar’s choices:
Items: x1, x2, …, xn
Value: v1, v2, …, vn
Max Quantity: q1, q2, …, qn
Weight per unit quantity: w1, w2, …, wn
Getaway Truck has a weight limit of B.
Burglar can take “fractional” amount of any item.
How can burglar maximize value of the loot?

• Greedy Algorithm works!
Pick the maximum possible quantity of highest
value per weight item. Continue until weight limit
of truck is reached.

02/26/04 Lecture 14 4

0-1 Knapsack Problem

• Burglar’s choices:
Items: x1, x2, …, xn

Value: v1, v2, …, vn

Weight: w1, w2, …, wn

Getaway Truck has a weight limit of B.
Burglar cannot take “fractional” amount of item.
How can burglar maximize value of the loot?

• Greedy Algorithm does not work! Why?
• Need dynamic programming!

02/26/04 Lecture 14 5

0-1 Knapsack Problem

• Subproblems?
– V[j, L] = Optimal solution for knapsack problem assuming

a truck of weight limit L and choice of items from set
{1,2,…, j}.

– V[n, B] = Optimal solution for original problem
– V[1, L] = easy to compute for all values of L.

• Table of solutions?
– V[1..n, 1..B]

• Ordering of subproblems?
– Row-wise

• Recurrence Relation? [Either xj included or not]
– V[j, L] = max { V[j-1, L],

vj + V[j-1, L-wj] }

	Dynamic Programming vs. Divide-&-conquer
	Dynamic programming vs Greedy
	Fractional Knapsack Problem
	0-1 Knapsack Problem
	0-1 Knapsack Problem

